Article contents
NDVI, biomass, and landscape evolution of glaciated terrain in northern Alaska
Published online by Cambridge University Press: 27 October 2009
Abstract
The patterns of the normalized difference vegetation index (NDVI) on three glacial surfaces of different ages in the vicinity of Toolik Lake, Alaska, were examined. NDVI was derived from SPOT multispectral digital data, and the images were stratified according to boundaries on glacial geology and vegetation maps. Ground-level measurements of NDVI from common vegetation types were also collected, using a portable spectrometer. Late Pleistocene glacial surfaces have lower image-NDVI than older Middle Pleistocene surfaces, and the mean NDVI is correlated with approximate time since deglaciation. The trends are related to differences in NDVI associated with vegetation growing on mineral vs peaty substrates. Nonacidic mineral substrates are more common on the younger landscapes, and acidic peaty soils are more common on the older surfaces. The field-NDVIs of acidic dry, moist, and wet tundra are consistently higher than those of corresponding nonacidic tundra types. These same trends are seen when the SPOT NDVI image is stratified according to vegetation boundaries appearing on two detailed vegetation maps in the region. Above-ground biomass of moist and wet acidic tundra is significantly greater than corresponding nonacidic types. Vegetation species composition was examined along two transects on the oldest and youngest glacial surfaces. Shrub cover is the most important factor affecting the spectral signatures and biomass. Older surfaces have greater cover of shrub-rich tussock tundra and shrub-filled water tracks, and the younger surfaces have more dry, well-drained sites with low biomass and relatively barren nonsorted circles and stripes. These trends are related to paludification and modification of the terrain by geomorphic and geochemical processes. Similar patterns of spectral reflectance have been noted in association with a variety of large-scale natural disturbances in northern Alaska. However, extrapolation of these results to much broader regions of the circumpolar Arctic will require the use of sensors covering larger areas, such as the AVHRR aboard the NOAA satellites.
- Type
- Articles
- Information
- Copyright
- Copyright © Cambridge University Press 1995
References
- 64
- Cited by