Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T15:18:37.175Z Has data issue: false hasContentIssue false

Proxy-based 300-year High Arctic climate warming record from Svalbard

Published online by Cambridge University Press:  20 August 2019

Tomi P. Luoto*
Affiliation:
Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
Antti E. K. Ojala
Affiliation:
Geological Survey of Finland, Vuorimiehentie 5, 02151 Espoo, Finland
Marek Zajaczkowski
Affiliation:
Instytut Oceanologii, Polska Akademia Nauk, Powstańców Warszawy 55, 81−712 Sopot, Poland
*
Author for correspondence: Tomi P. Luoto, Email: tomi.luoto@helsinki.fi

Abstract

We used fossil Chironomidae assemblages and the transfer function approach to reconstruct summer air temperatures over the past 300 years from a High Arctic lake in Hornsund, Svalbard. Our aims were to compare reconstructed summer temperatures with observed (last 100 years) seasonal temperatures, to determine a potential climate warming break point in the temperature series and to assess the significance and rate of the climate warming trend at the study site. The reconstructed temperatures were consistent with a previous proxy record from Svalbard and showed good correlation with the meteorological observations from Bjørnøya and Longyearbyen. From the current palaeoclimate record, we found a significant climate warming threshold in the 1930s, after which the temperatures rapidly increased. We also found that the climate warming trend was strong and statistically significant. Compared with the reconstructed Little Ice Age temperatures in late eighteenth century cooling culmination, the present day summer temperatures are >4°C higher and the temperature increase since the 1930s has been 0.5°C per decade. These results highlight the exceptionally rapid recent warming of southern Svalbard and add invaluable information on the seasonality of High Arctic climate change and Arctic amplification.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arppe, L., Kurki, E., Wooller, M. J., Luoto, T. P., Zajączkowski, M., & Ojala, A. E. K. (2017). A 5500-year oxygen isotope record of high-arctic environmental change from southern Spitsbergen. The Holocene, 27, 19481962.CrossRefGoogle Scholar
Axford, Y., Briner, J. P., Miller, G. H., & Francis, D. R. (2009). Paleoecological evidence for abrupt cold reversals during peak Holocene warmth on Baffin Island, Arctic Canada. Quaternary Research, 71, 142149.CrossRefGoogle Scholar
Besonen, M. R., Patridge, W., Bradley, R. S., Francus, P., Stoner, J. S., & Abbott, M. B. (2008). A record of climate over the last millennium based on varved lake sediments from the Canadian High Arctic. The Holocene, 18, 169180.CrossRefGoogle Scholar
Brooks, S. J. (2006). Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region. Quaternary Science Reviews, 25, 18941910.CrossRefGoogle Scholar
Brooks, S. J., & Birks, H. J. B. (2004). The dynamics of Chironomidae (Insecta: Diptera) assemblages in response to environmental change during the past 700 years on Svalbard. Journal of Paleolimnology, 31, 483498.CrossRefGoogle Scholar
Brooks, S. J., Langdon, P. G., & Heiri, O. (2007). The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. London: Quaternary Research Association.Google Scholar
Chapin, F. S., Sturm, M., Serreze, M. C., McFadden, J. P., Key, J. R., Lloyd, A. H., … Beringer, J. (2005). Role of land-surface changes in Arctic summer warming. Science, 310, 657660.CrossRefGoogle ScholarPubMed
Cisek, M., Makuch, P., & Petelski, T. (2017). Comparison of meteorological conditions in Svalbard fjords: Hornsund and Kongsfjorden. Oceanologia, 59, 413421.CrossRefGoogle Scholar
Cleveland, W. S. (1979). Robust locally weighted fitting and smoothing scatterplots. Journal of the American Statistical Association, 74, 829836.CrossRefGoogle Scholar
Cleveland, W. S. (1981). A program for smoothing scatterplots by robust locally weighted fitting. The American Statistician, 35, 54.CrossRefGoogle Scholar
D’Andrea, W. J., Vaillencourt, D. A., Balascio, N. L., Werner, A., Roof, S. R., Retelle, M., & Bradley, R. S. (2012). Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard. Geology, 40, 10071010.CrossRefGoogle Scholar
de Jong, R., Kamenik, C., Westover, K., & Grosjean, M. (2013). A chrysophyte stomatocyst-based reconstruction of cold-season air temperature from Alpine Lake Silvaplana (AD 1500–2003); methods and concepts for quantitative inferences. Journal of Paleolimnology, 50, 519533.CrossRefGoogle Scholar
Eggermont, H., & Heiri, O. (2012) The chironomid‐temperature relationship: expression in nature and palaeoenvironmental implications. Biological Reviews, 87, 430456.10.1111/j.1469-185X.2011.00206.xCrossRefGoogle ScholarPubMed
Engels, S., Self, A. E., Luoto, T. P., Brooks, S. J., & Helmens, K. F. (2014). A comparison of three Eurasian chironomid-climate calibration datasets on a W-E continentality gradient and the implications for quantitative temperature reconstructions. Journal of Paleolimnology, 51, 529547.CrossRefGoogle Scholar
Fortin, M. C., Medeiros, A. S., Gajewski, K., Barley, E. M., Larocque-Tobler, I., Porinchu, D. F., & Wilson, S. E. (2015). Chironomid-environment relations in northern North America. Journal of Paleolimnology, 54, 223237.CrossRefGoogle Scholar
Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E., & Skaugen, T. E. (2011). Temperature and precipitation development at Svalbard 1900–2100. Advances in Meteorology. doi:10.1155/2011/893790.CrossRefGoogle Scholar
Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. New York: Van Nostrand Reinhold.Google Scholar
Hanssen-Bauer, I. (2002). Temperature and precipitation in Svalbard 1912–2050: measurements and scenarios. Polar Record, 38, 225232.CrossRefGoogle Scholar
Heiri, O., Birks, H. J. B., Brooks, S. J., Velle, G., & Willassen, E. (2003). Effects of within-lake variability of fossil assemblages on quantitative chironomid-inferred temperature reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 199, 95106.CrossRefGoogle Scholar
Heiri, O., Brooks, S. J., Birks, H. J. B., & Lotter, A. F. (2011). A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quaternary Science Reviews, 30, 34453456.CrossRefGoogle Scholar
Helama, S., Luoto, T. P., Nevalainen, L., & Edvardsson, J. (2017). Rereading a tree-ring database to illustrate depositional histories of subfossil trees. Palaeontologia Electronica, 20.1.2A, 112.CrossRefGoogle Scholar
Hofmann, W. (1988). The significance of chironomid analysis (Insecta: Diptera) for paleolimnological research. Palaeogeography, Palaeoclimatology, Palaeoecology, 62, 501509.CrossRefGoogle Scholar
Humlum, O., Instanes, A., & Sollid, J. L. (2003). Permafrost in Svalbard: A review of research history, climatic background and engineering challenges. Polar Research, 22, 191215.CrossRefGoogle Scholar
Isaksson, E., Divine, D., Kohler, J., Martma, T., Pohjola, V., Motoyama, H., & Watanabe, O. (2005). Climate oscillations as recorded in svalbard ice core ω18O records between ad 1200 and 1997. Geografiska Annaler: Series A, Physical Geography, 87, 203214.CrossRefGoogle Scholar
Kaufman, D. S. (2009). An overview of late Holocene climate and environmental change inferred from Arctic lake sediment. Journal of Paleolimnology, 41, 16.CrossRefGoogle Scholar
Kaufman, D. S., Schneider, D. P., McKay, N. P., Ammann, C. M., Bradley, R. S., Briffa, K. R., … Arctic Lakes 2k Project Members. (2009). Recent warming reverses long-term Arctic cooling. Science, 325, 12361239.CrossRefGoogle ScholarPubMed
Klein, E. S., Nolan, M., McConnell, J., Sigl, M., Cherry, J., Young, J., & Welker, J. M. (2016). McCall Glacier record of Arctic climate change: Interpreting a northern Alaska ice core with regional water isotopes. Quaternary Science Reviews, 131, 274284.CrossRefGoogle Scholar
Kohler, J., Nordli, Ø., Brandt, O., Isaksson, E., Pohjola, V., Martma, T., & Aas, H. F. (2002). Svalbard Temperature and Precipitation, Late 19th Century to the Present. Final Report on ACIA-funded Project. Oslo, Norway: Norwegian Polar Institute.Google Scholar
Martín-Moreno, R., Allendo Álvarez, F., & Ove Hagen, J. (2017). ‘Little Ice Age’ glacier extent and subsequent retreat in Svalbard archipelago. The Holocene, 27, 13791390.CrossRefGoogle Scholar
Larocque-Tobler, I., Filipiak, J., Tylmann, W., Bonk, A., & Grosjean, M. (2015). Comparison between chironomid-inferred mean-August temperature from varved Lake Żabińskie (Poland) and instrumental data since 1896 AD. Quaternary Science Reviews, 111, 3550.CrossRefGoogle Scholar
Lecavalier, B. S., Fisher, D. A., Milne, G. A., Vinther, B. M., Tarasov, L., Huybrechts, P., … Dyke, A. S. (2017). High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution. Proceedings of the National Academy of Sciences, 114, 5952–5957.CrossRefGoogle Scholar
Linderholm, H. W., Nicolle, M., Francus, P., Gajewski, K., Helama, S., Korhola, A., … Väliranta, M. (2018). Arctic hydroclimate variability during the last 2000 years: current understanding and research challenges. Climate of the Past, 14, 473514.CrossRefGoogle Scholar
Lund, D. C., Lynch-Stieglitz, J., & Curry, W. B. (2006). Gulf Stream density structure and transport during the past millennium. Nature, 444, 601604.CrossRefGoogle ScholarPubMed
Luoto, T. P. (2009). Subfossil Chironomidae (Insecta: Diptera) along a latitudinal gradient in Finland: development of a new temperature inference model. Journal of Quaternary Science, 24, 150158.CrossRefGoogle Scholar
Luoto, T. P. (2013). How cold was the Little Ice Age? A proxy-based reconstruction from Finland applying modern analogues of fossil midge assemblages. Environmental Earth Sciences, 68, 13211329.CrossRefGoogle Scholar
Luoto, T. P., Brooks, S. J., & Salonen, V. P. (2014b). Ecological responses to climate change in a bird-impacted High Arctic pond (Nordaustlandet, Svalbard). Journal of Paleolimnology, 51, 8797.CrossRefGoogle Scholar
Luoto, T. P., & Nevalainen, L. (2017). Quantifying climate changes of the Common Era for Finland. Climate Dynamics, 49, 25572567.CrossRefGoogle Scholar
Luoto, T. P., & Nevalainen, L. (2018). Temperature-precipitation relationship of the Common Era in northern Europe. Theoretical and Applied Climatology, 132, 933938.CrossRefGoogle Scholar
Luoto, T. P., & Ojala, A. E. K. (2017). Meteorological validation of chironomids as a paleotemperature proxy using varved lake sediments. The Holocene, 27, 870878.CrossRefGoogle Scholar
Luoto, T. P., Oksman, M., & Ojala, A. E. K. (2015). Climate change and bird impact as drivers of High Arctic pond deterioration. Polar Biology, 38, 357368.CrossRefGoogle Scholar
Luoto, T. P., Kaukolehto, M., Weckström, J., Korhola, A., & Väliranta, M. (2014a). New evidence of warm early-Holocene summers in subarctic Finland based on an enhanced regional chironomid-based temperature calibration model. Quaternary Research, 81, 5062.CrossRefGoogle Scholar
Luoto, T. P., Kivilä, E. H., Rantala, M. V., & Nevalainen, L. (2017a). Characterization of the Medieval Climate Anomaly, Little Ice Age and recent warming in northern Lapland. International Journal of Climatology, 37, 12571266.CrossRefGoogle Scholar
Luoto, T. P., Kuhry, P., Holzkämper, S., Solovieva, N., & Self, A. E. (2017b). A 2000-year record of lake ontogeny and climate variability from the north-eastern European Russian Arctic. The Holocene, 27, 339348.CrossRefGoogle Scholar
Luoto, T. P., Rantala, M. V., Galkin, A., Rautio, M., & Nevalainen, L. (2016). Environmental determinants of chironomid communities in remote northern lakes across the treeline – Implications for climate change assessments. Ecological Indicators, 61, 991999.CrossRefGoogle Scholar
Luoto, T. P., Rantala, M. V., Kivilä, E. H., Nevalainen, L., & Ojala, A. E. K. (2019). Biogeochemical cycling and ecological thresholds in a High Arctic lake (Svalbard). Aquatic Sciences, 81, 34.CrossRefGoogle Scholar
Majewski, W., Szczuciński, W., & Zajączkowski, M. (2009). Interactions of Arctic and Atlantic water-masses and associated environmental changes during the last millennium, Hornsund (SW Svalbard). Boreas, 38, 529544.CrossRefGoogle Scholar
Marsz, A. A., & Styszyńska, A. (eds). (2013). Climate and Climate Change at Hornsund, Svalbard. Gdynia: Gdynia Maritime University, 402 pp.Google Scholar
Matskovsky, V. V., & Helama, S. (2014). Testing long-term summer temperature reconstruction based on maximum density chronologies obtained by reanalysis of tree-ring data sets from northernmost Sweden and Finland. Climate of the Past, 10, 14731487.CrossRefGoogle Scholar
Nazarova, L., Bleibtreu, A., Hoff, U., Dirksen, V., & Diekmann, B. (2017). Changes in temperature and water depth of a small mountain lake during the past 3000 years in Central Kamchatka reflected by a chironomid record. Quaternary International, 447, 4658.CrossRefGoogle Scholar
Nazarova, L., Self, A. E., Brooks, S. J., van Hardenbroek, M., Herzschuh, U., & Diekmann, B. (2015). Northern Russian chironomid-based modern summer temperature data set and inference models. Global and Planetary Change, 134, 1025.CrossRefGoogle Scholar
Nilsen, F., Skogseth, R., Vaardal-Lunde, J., & Inall, M. (2016). A simple shelf circulation model: Intrusion of Atlantic water on the west Spitsbergen shelf. Journal of Physical Oceanography, 46, 12091230.CrossRefGoogle Scholar
Nordli, Ø. (2010). The Svalbard airport temperature series. Bulletin of Geography. Physical Geography Series, 3, 525.CrossRefGoogle Scholar
Ojala, A. E. K., Arppe, L., Luoto, T. P., Wacker, L., Kurki, E., Zajączkowski, M., … Oksman, M. (2016). Sedimentary environment, lithostratigraphy and dating of sediment sequences from Arctic lakes Revvatnet and Svartvatnet in Hornsund, Svalbard. Polish Polar Research, 37, 2348.CrossRefGoogle Scholar
Oosterbaan, R. (2005). Statistical significance of segmented linear regression with breakpoint using variance analysis and F-tests. URL: https://www.waterlog.info/segreg.htm.Google Scholar
Osborn, T. J., & Briffa, K. R. (2006). The spatial extent of 20th-century warmth in the context of the past 1200 years. Science, 311, 841844.CrossRefGoogle ScholarPubMed
Pawłowska, J., Zajączkowski, M., Łącka, M., Lejzerowicz, F., Esling, P., & Pawłowski, J. (2016). Palaeoceanographic changes in Hornsund Fjord (Spitsbergen, Svalbard) over the last millennium: new insights from ancient DNA. Climate of the Past, 12, 14591472.CrossRefGoogle Scholar
Plikk, A., Engels, S., Luoto, T. P., Nazarova, L., Salonen, J. S., & Helmens, K. F. (2019). Chironomid-based temperature reconstruction for the Eemian Interglacial (MIS 5e) at Sokli, northeast Finland. Journal of Paleolimnology, 61, 355371.CrossRefGoogle Scholar
Rantala, M. V., Luoto, T. P., & Nevalainen, L. (2016). Temperature controls organic carbon sequestration in a subarctic lake. Scientific Reports, 6, 34780.CrossRefGoogle Scholar
Self, A. E., Brooks, S. J., Birks, H. J. B., Nazarova, L., Porinchu, D., Odland, A., … Jones, V. J. (2011). The distribution and abundance of chironomids in high-latitude Eurasian lakes with respect to temperature and continentality: development and application of new chironomid-based climate-inference models in northern Russia. Quaternary Science Reviews, 30, 11221141.CrossRefGoogle Scholar
Shala, S., Helmens, K. F., Luoto, T. P., Salonen, J. S., Väliranta, M., & Weckström, J. (2017). Comparison of quantitative Holocene temperature reconstructions using multiple proxies from a northern boreal lake. The Holocene, 27, 17451755.CrossRefGoogle Scholar
Šmilauer, P., & Lepš, J. (2014). Multivariate Analysis of Ecological Data Using CANOCO 5. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Thomas, E. K., Axford, Y., & Briner, J. P. (2008). Rapid 20th century environmental change on northeastern Baffin Island, Arctic Canada inferred from a multi-proxy lacustrine record. Journal of Paleolimnology, 40, 507517.CrossRefGoogle Scholar
Tiljander, M., Saarnisto, M., Ojala, A. E. K., & Saarinen, T. (2003). A 3000-year palaeoenvironmental record from annually laminated sediments of Lake Korttajärvi, central Finland. Boreas, 32, 233243.Google Scholar
Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., & Frank, D. C. (2009). Persistent positive North Atlantic Oscillation mode dominated the Medieval climate anomaly. Science, 324, 7880.CrossRefGoogle ScholarPubMed
Wanamaker, A. D. Jr, Butler, P. G., Scourse, J. D., Heinemeier, J., Eiríksson, J., Knudsen, K. L., & Richardson, C. A. (2012). Surface changes in the North Atlantic meridional overturning circulation during the last millennium, Nature Communications, 3, 899.CrossRefGoogle ScholarPubMed
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., … Küttel, M. (2008). Mid-to Late Holocene climate change: an overview. Quaternary Science Reviews, 27, 17911828.CrossRefGoogle Scholar
Weckström, J., Korhola, A., Erästö, P., & Holmström, L. (2006). Temperature patterns over the past eight centuries in Northern Fennoscandia inferred from sedimentary diatoms. Quaternary Research, 66, 7886.CrossRefGoogle Scholar
Werner, J. P., Divine, D. V., Ljungqvist, F. C., Nilsen, T., & Francus, P. (2018). Spatio-temporal variability of Arctic summer temperatures over the past 2 millennia. Climate of the Past, 14, 527.CrossRefGoogle Scholar
Zawiska, I., Luoto, T. P., Nevalainen, L., Tylmann, W., Jensen, T. C., Obremska, M., … Walseng, B. (2017). Climate variability and lake ecosystem responses in western Scandinavia (Norway) during the last Millennium. Palaeogeography, Palaeoclimatology, Palaeoecology, 466, 231239.CrossRefGoogle Scholar