Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T04:14:09.871Z Has data issue: false hasContentIssue false

Understanding the link between sea ice, ice scour and Antarctic benthic biodiversity–the need for cross-station and international collaboration

Published online by Cambridge University Press:  01 March 2017

D. Deregibus
Affiliation:
Departamento de Biología Costera, Instituto Antártico Argentino, 25 de Mayo 1147 (PC 1650) San Martín, Buenos Aires, Argentina (dderegibus@dna.gov.ar)
M.L. Quartino
Affiliation:
Departamento de Biología Costera, Instituto Antártico Argentino, 25 de Mayo 1147 (PC 1650) San Martín, Buenos Aires, Argentina and Museo Argentino de Ciencias Naturales ‘B. Rivadavia’, Av. A. Gallardo 470 (C1405DJR), Buenos Aires, Argentina
K. Zacher
Affiliation:
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
G.L. Campana
Affiliation:
Departamento de Biología Costera, Instituto Antártico Argentino, 25 de Mayo 1147 (PC 1650) San Martín, Buenos Aires, Argentina and Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución (6700), Luján, Buenos Aires, Argentina
D.K.A. Barnes
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK

Abstract

The western Antarctic Peninsula (WAP) is a hotspot of rapid recent regional ‘climate change’. This has resulted in a 0.4°C rise in sea temperature in the last 50 years, five days of sea ice lost per decade and increased ice scouring in the shallows. The WAP shallows are ideal for studying the biological response to physical change because most known Antarctic species are benthic, physical change occurs mainly in the shallows and most research stations are coastal. Studies at Rothera Station have found increased benthic disturbance with losses of winter sea ice and assemblage-level changes coincident with this ice scouring. Such studies are difficult to scale up as they depend on SCUBA diving – a very spatially limited technique. Here we report attempts to broaden the understanding of benthic ecosystem responses to physical change by replicating the Rothera experimental grids at Carlini Station through collaboration between the UK, Argentina and Germany across Signy, Rothera and Carlini stations. We argue that such collaborations are the way forward towards understanding the big picture of biota responses to physical climate changes at a regional scale.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amsler, C.D., Iken, K., McClintock, J.B. and others. 2005. Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Marine Ecology Progress Series 294: 141159.CrossRefGoogle Scholar
Atkinson, A., Siegel, V., Pakhomov, E., Rothery, P. and others. 2008. Oceanic circumpolar habitats of Antarctic krill. Marine Ecology Progress Series 362: 123. doi:10.3354/meps07498.Google Scholar
Barnes, D.K.A. 2013. Marine biology: new light on growth in the cold. Current Biology 23 (14): R609R611. doi:10.1016/j.cub.2013.05.058.CrossRefGoogle ScholarPubMed
Barnes, D.K.A. 2015. Antarctic sea ice losses drive gains in benthic carbon drawdown. Current Biology 25 (18): R789R790. doi:10.1016/j.cub.2015.07.042.CrossRefGoogle ScholarPubMed
Barnes, D.K.A. 2016. Iceberg killing fields limit huge potential for benthic blue carbon in Antarctic shallows. Global Change Biology. doi:10.1111/gcb.13523.Google ScholarPubMed
Barnes, D.K.A. and Brockington, S.. 2003. Zoobenthic biodiversity, biomass and abundance at Adelaide Island, Antarctica. Marine Ecology Progress Series 249: 145155. doi:10.3354/meps249145.Google Scholar
Barnes, D.K.A., Fenton, M. and Cordingley, A.. 2014. Climate-linked iceberg activity massively reduces spatial competition in Antarctic shallow waters. Current Biology 24 (12): R553R554. doi:10.1016/j.cub.2014.04.040.CrossRefGoogle ScholarPubMed
Barnes, D.K.A. and Peck, L.. 2008. Vulnerability of Antarctic shelf biodiversity to predicted regional warming. Climate Research 37: 149163. doi:10.3354/cr00760.CrossRefGoogle Scholar
Barnes, D.K.A. and Souster, T.. 2011. Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nature Climate Change 1: 14. doi:10.1038/nclimate1232.CrossRefGoogle Scholar
Bartsch, I., Paar, M., Freddriksen, S. and others. 2016. Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming. Polar Biology 39: 20212036. doi:10.1007/s00300-015-1870-1.CrossRefGoogle Scholar
Becker, S., Quartino, M.L., Campana, G.L. and others. 2011. The biology of an Antarctic rhodophyte, Palmaria decipiens: recent advances. Antarctic Science 23: 419430. doi:10.1017/S0954102011000575.CrossRefGoogle Scholar
Bennett, J.R., Shaw, J.D., Terauds, A. and others. 2015. Polar lessons learned: informing long-term management based on shared threats in Arctic and Antarctic environments. Frontiers in Ecology and the Environment 15: 316324. doi:10.1890/140315.CrossRefGoogle Scholar
Brown, K.M., Fraser, K.P.P., Barnes, D.K.A. and others. 2004. Links between the structure of an Antarctic shallow-water community and ice-scour frequency. Oecologia 141: 121129. doi:10.1007/s00442-004-1648-6.CrossRefGoogle ScholarPubMed
Campana, G.L., Zacher, K., Fricke, A. and others. 2009. Drivers of colonization and succession in polar benthic macro and microalgal communities. Botanica Marina 52: 655667. doi:10.1515/BOT.2009.076.Google Scholar
Chown, S.L., Clarke, A., Fraser, C.I. and others. 2015. The changing form of Antarctic biodiversity. Nature 522: 431438. doi:10.1038/nature14505.Google Scholar
Clark, G.F., Stark, J.S. and Johnston, E.L.. 2013. Light-driven tipping points in polar ecosystems. Global Change Biology 12: 37493761. doi:10.1111/gcb.12337.CrossRefGoogle Scholar
Clark, G.F., Stark, J.S., Perrett, L.A. and others. 2011. Algal canopy as a proxy for the disturbance history of understory communities in East Antarctica. Polar Biology 34: 781790.Google Scholar
Conlan, K.E., Lenihan, H.S., Kvitek, R.G. and others. 1998. Ice scour disturbance to benthic communities in the Canadian High Arctic. Marine Ecology Progress Series 166: 116. doi:10.3354/meps166001.CrossRefGoogle Scholar
Constable, A.J., Melbourne-Thomas, J., Corney, S.P. and others. 2014. Climate change and Southern Ocean ecosystems. I: How changes in physical habitats directly affect marine biota. Global Change Biology 20: 30043025. doi:10.1111/gcb.12623.CrossRefGoogle ScholarPubMed
Convey, P., Pugh, P.J.A., Jackson, C. and others. 2002. Response of Antarctic terrestrial microarthropods to long-term climate manipulations. Ecology 83: 31303140. doi:10.1890/0012-9658(2002)083[3130:ROATMT]2.0.CO;2.CrossRefGoogle Scholar
Cook, A.J., Fox, A.J., Vaughan, D.G. and others. 2005. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308: 541544.CrossRefGoogle ScholarPubMed
Deregibus, D., Quartino, M.L., Campana, G.L. and others. 2016. Photosynthetic light requirements and vertical distribution of macroalgae in newly ice-free areas in Potter Cove, South Shetland Islands, Antarctica. Polar Biology 39: 153166. doi:10.1007/s00300-015-1679-y.CrossRefGoogle Scholar
Deregibus, D., Scharf, F.K., Pasotti, F. and others. 2015. IMCONet research areas map of Potter Cove, King George Island (I. 25 de Mayo), with links to maps. Buenos Aires: Instituto Antártico Argentino: doi:10.1594/PANGAEA.853859.Google Scholar
Ducklow, H.W., Fraser, W.R., Meredith, M.P. and others. 2013. West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography 26: 190203. doi:10.5670/oceanog.2013.62.Google Scholar
Favero-Longo, S.E., Worland, M.R., Convey, P and other. 2012. Primary succession of lichen and bryophyte communities following glacial recession on Signy Island, South Orkney Islands. Antarctic Science 24: 323336. doi:10.1017/S0954102012000120.CrossRefGoogle Scholar
Fillinger, L., Janussen, D., Lundälv, T. and others. 2013. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Current Biology 23 (14): 13301334. doi:10.1016/j.cub.2013.05.051.Google Scholar
Frenot, Y., Chown, S.L., Whinam, J. and others. 2005. Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews 80: 4572.CrossRefGoogle ScholarPubMed
Gómez Izquierdo, D.R., Quartino, M.L., Fernández-Ajo, A. and others. 2009. Photographs of Potter Cove, King George Island, looking northeast towards glacier in 2009. Buenos Aires: Instituto Antártico Argentino. doi:10.1594/PANGAEA.773378.Google Scholar
Gómez Izquierdo, D.R., Quartino, M.L., Morettini, A., and others. 2010. Photographs of Potter Cove, King George Island, looking northeast towards glacier in 2010. Buenos Aires: Instituto Antártico Argentino. doi:10.1594/PANGAEA.730506.Google Scholar
Gómez Izquierdo, D.R., Quartino, M.L., Morettini, A., and others. 2011. Photographs of Potter Cove, King George Island, looking northeast towards glacier in 2011. Buenos Aires: Instituto Antártico Argentino. doi:10.1594/PANGAEA.773374.Google Scholar
Gómez Izquierdo, D.R., Quartino, M.L., Morettini, A., and others. 2012. Photographs of Potter Cove, King George Island, looking northeast towards glacier in 2012. Buenos Aires: Instituto Antártico Argentino. doi:10.1594/PANGAEA.773364.Google Scholar
Gómez Izquierdo, D.R., Quartino, M.L., Morettini, A., and others. 2013. Photographs of Potter Cove, King George Island, looking northeast towards glacier in 2013. Buenos Aires: Instituto Antártico Argentino. doi:10.1594/PANGAEA.804601.Google Scholar
Gómez Izquierdo, D.R., Quartino, M.L., Morettini, A., and others. 2014. Photographs of Potter Cove, King George Island, looking northeast towards glacier in 2014. Buenos Aires: Instituto Antártico Argentino. doi:10.1594/PANGAEA.825233.Google Scholar
Gómez Izquierdo, D.R., Quartino, M.L., Morettini, A., and others. 2015. Photographs of Potter Cove, King George Island, looking northeast towards glacier in 2015. Buenos Aires: Instituto Antártico Argentino. doi:10.1594/PANGAEA.841059.Google Scholar
Gómez Izquierdo, D.R., Quartino, M.L. and Abele, D.. 2014. Photographs of Potter Cove, King George Island, looking west towards Maxwell Bay in 2013. Buenos Aires: Instituto Antártico Argentino. doi:10.1594/PANGAEA.831202.Google Scholar
González, P.M., Deregibus, D., Malanga, G. and others. 2017. Oxidative balance in macroalgae from Antarctic waters – possible role of Fe. Journal of Experimental Marine Biology and Ecology 486: 379386.CrossRefGoogle Scholar
Grange, L.J. and Smith, C.R.. 2013. Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity. PLoS ONE 8: e77917. doi:10.1371/journal.pone.0077917.CrossRefGoogle ScholarPubMed
Gutt, J. 2001. On the direct impact of ice on marine benthic communities, a review. Polar Biology 24: 553564.CrossRefGoogle Scholar
Gutt, J., Bertler, N., Bracegirdle, T.J. and others. 2015. The Southern Ocean ecosystem under multiple climate change stresses – an integrated circumpolar assessment. Global Change Biology 21: 14341453. doi:10.1111/gcb.12794.Google Scholar
Gutt, J. and Piepenburg, D.. 2003. Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Marine Ecology Progress Series 253: 7783.CrossRefGoogle Scholar
Gutt, J. and Starmans, A.. 2001. Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica). Polar Biology 24: 615619. doi:10.1007/s003000100263.Google Scholar
Hayward, P.J. 1995. Antarctic cheilostomatous bryozoa. New York: Oxford University Press.CrossRefGoogle Scholar
Huang, Y., Amsler, M., McClintock, J. and others. 2007. Patterns of Gammaridean amphipod abundance and species composition associated with dominant subtidal macroalgae from the Western Antarctic Peninsula. Polar Biology 30: 14171430.CrossRefGoogle Scholar
Huang, Y., McClintock, J.B., Amsler, C. and others. 2006. Feeding rates of common Antarctic gammarid amphipods on ecologically important sympatric macroalgae. Journal of Experimental Marine Biology and Ecology 329: 5565.Google Scholar
IPCC (Intergovernmental Panel on Climate Change). 2014. Climate change 2014: impacts, adaptation, and vulnerability. Summaries, frequently asked questions, and cross-chapter boxes. A Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: World Meteorological Organization: 190 pp.Google Scholar
Johnston, E.L., Connell, S.D., Irving, A.D. and others. 2007. Antarctic patterns of shallow subtidal habitat and inhabitants in Wilke's Land. Polar Biology 30: 781788.Google Scholar
Krause-Jensen, D. and Duarte, C.M.. 2014. Expansion of vegetated coastal ecosystems in the future Arctic. Frontiers in Marine Science. doi:10.3389/fmars.2014.00077.CrossRefGoogle Scholar
Keats, D.W., South, G.R. and Steele, D.H.. 1985. Algal biomass and diversity in the upper subtidal at a pack-ice disturbed site in eastern Newfoundland. Marine Ecology Progress Series 25: 151158.Google Scholar
Kim, D. 2001. Seasonality of marine algae and grazers of an Antarctic rocky intertidal, with emphasis on the role of the limpet Nacella concinna Strebel (Gastropoda: Patellidae). Berichte zür Polar-und Meeresforschung 397: 1136.Google Scholar
Laffoley, D.A. and Grimsditch, G.. 2009. The management of natural coastal carbon sinks. Gland: International Union for Conservation of Nature: 53 pp.Google Scholar
Lastra, M., Rodil, I.F., Sánchez-Mata, A. and others. 2014. Fate and processing of macroalgal wrack subsidies in beaches of Deception Island, Antarctic Peninsula. Journal of Sea Research 88: 110. doi:10.1016/j.seares.2013.12.011.CrossRefGoogle Scholar
Martinez, B., Arenas, F., Trilla, A. and others. 2014. Combining physiological threshold knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae. Global Change Biology 21: 14221433. doi:10.1111/gcb.12655.CrossRefGoogle ScholarPubMed
McCook, L.J. and Chapman, A.R.O.. 1997. Patterns and variations in natural succession following massive ice-scour of a rocky intertidal seashore. Journal of Experimental Marine Biology and Ecology 214: 121147.CrossRefGoogle Scholar
Meredith, M.P. and King, J.C.. 2005. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters 32: 15. doi:10.1029/2005GL024042.Google Scholar
Moon, H.W., Hussin, W.M.R.W., Kim, H.C. and others. 2015. The impacts of climate change on Antarctic nearshore mega-epifaunal benthic assemblages in a glacial fjord on King George Island: responses and implications. Ecological Indicators 57: 280292. doi:10.1016/j.ecolind.2015.04.031.Google Scholar
Moreau, S., Mostajir, B., Bélanger, S. and others. 2015. Climate change enhances primary production in the Western Antarctic Peninsula. Global Change Biology 21: 21912205. doi:10.1111/gcb.12878.Google Scholar
Moreira, E., Juares, M. and Barrera-Oro, E.R.. 2014. Dietary overlap among early juvenile stages in an Antarctic notothenioid fish assemblage at Potter Cove, South Shetland Islands. Polar Biology 37: 15071515. doi:10.1007/s00300-014-1545-3.Google Scholar
Murphy, E.J., Clarke, A., Abram, N.J. and others. 2014. Variability of sea-ice in the northern Weddell Sea during the 20th century. Journal of Geophysical Research - Oceans 119: 45494572. doi:10.1002/2013JC009511.Google Scholar
Orr, J.C., Fabry, V.J., Aumont, O. and others. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681686. doi:10.1038/nature04095.Google Scholar
Parkinson, C.L. 2002. Trends in the length of the Southern Ocean sea-ice seasons, 1979–99. Annals of Glaciology 34: 435440.CrossRefGoogle Scholar
Parnikoza, I., Convey, P., Dykyy, I. and others. 2009. Current status of the Antarctic herb tundra formation in the Central Argentine Islands. Global Change Biology 15: 16851693. doi:10.1111/j.1365-2486.2009.01906.x.Google Scholar
Pasotti, F., Manini, E., Giovannelli, D. and others. 2014. Antarctic shallow water benthos under glacier retreat forcing. Marine Ecology 36: 716733. doi:10.1111/maec.12179.CrossRefGoogle Scholar
Peck, L.S., Brockington, S., Vanhove, S. and others. 1999. Community recovery following catastrophic iceberg impacts in a soft-sediment shallow-water site at Signy Island, Antarctica. Marine Ecology Progress Series 186: 18.CrossRefGoogle Scholar
Peck, L.S., Webb, K.E. and Bailey, D.M.. 2004. Extreme sensitivity of biological function to temperature in Antarctic marine species. Functional Ecology 18: 625630. doi:10.1111/j.0269-8463.2004.00903.x.CrossRefGoogle Scholar
Peck, L.S., Barnes, D.K.A., Cook, A.J. and others. 2010. Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica. Global Change Biology 16: 26142623. doi:10.1111/j.1365-2486.2009.02071.x.Google Scholar
Quartino, M.L. and Boraso de Zaixso, A.L.. 2008. Summer macroalgal biomass in Potter Cove, South Shetland Islands, Antarctica: its production and flux to the ecosystem. Polar Biology 31: 281294.CrossRefGoogle Scholar
Quartino, M.L., Deregibus, D., Campana, G.L. and others. 2013. Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica. PLoS ONE 8: e58223. doi:10.1371/journal.pone.0058223.Google Scholar
Quartino, M.L., Klöser, H., Schloss, I.R. and others. 2001. Biomass and associations of benthic marine macroalgae from the inner Potter Cove (King George Island, Antarctica) related to depth and substrate. Polar Biology 24: 349355. doi:10.1007/s003000000218.Google Scholar
Sahade, R., Lagger, C., Torre, L. and others. 2015. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Science Advances 1: e1500050. doi:10.1126/sciadv.1500050.CrossRefGoogle Scholar
Schloss, I.R., Abele, D., Moreau, S. and others. 2012. Response of phytoplankton dynamics to 19 year (1991–2009) climate trends in Potter Cove (Antarctica). Journal of Marine Systems 92: 5366. doi:10.1016/j.jmarsys.2011.10.006.Google Scholar
Schloss, I.R., Wasilowska, A., Dumont, D. and others. 2014. On the phytoplankton bloom in coastal waters of southern King George Island (Antarctica) in January 2010: an exceptional feature? Limnology and Oceanography 59: 195210. doi:10.4319/lo.2014.59.1.0195.Google Scholar
Scrosati, R. and Heaven, C.. 2006. Field technique to quantify intensity of scouring by sea ice in rocky intertidal habitats. Marine Ecology Progress Series 320: 293295.CrossRefGoogle Scholar
Smale, D.A. and Barnes, D.K.A.. 2008. Likely responses of the Antarctic benthos to climate-related changes in physical disturbance during the 21st century, based primarily on evidence from the West Antarctic Peninsula region. Ecography (Cop) 31: 289305. doi:10.1111/j.0906-7590.2008.05456.x.Google Scholar
Smale, D.A., Brown, K.M., Barnes, D.K.A. and others. 2008. Ice scour disturbance in Antarctic waters. Science 321: 371.Google Scholar
Stammerjohn, S.E., Martinson, D.G., Smith, R.C. and others. 2008. Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep-Sea Research II - Topical Studies in Oceanography 55: 20412058.Google Scholar
Torre, L., Abele, D., Lagger, C. and others. 2014. When shape matters: strategies of different Antarctic ascidians morphotypes to deal with sedimentation. Marine Environmental Research 99: 179187. doi:10.1016/j.marenvres.2014.05.014.Google Scholar
Turner, J., Bindschadler, R., Convey, P. and others. 2009. Antarctic climate change and the environment. A contribution to the International Polar Year 2007–2008. Cambridge: Scientific Committee Antarctic Research: 526 pp.Google Scholar
Wiencke, C. and Amsler, C.D.. 2012. Seaweeds and their communities in polar regions. In: Wiencke, C. and Bischof, K. (editors). Seaweed biology, novel insights into ecophysiology, ecology and utilization. Heidelberg: Springer: 265292.CrossRefGoogle Scholar
Wiencke, C. and Clayton, M.N.. 2002. Antarctic seaweeds. In: Wagele, J.W. (editor). Synopses of the Antarctic benthos. Ruggell: A.R.G. Gantner.Google Scholar
Wölfl, A.C., Lim, C.H., Hass, H.C. and others. 2014. Distribution and characteristics of marine habitats in a subpolar bay based on hydroacoustics and bed shear stress estimates –, Potter Cove, King George Island, Antarctica. Geo-Marine Letters 34: 435446. doi:10.1007/s00367-014-0375-1.Google Scholar
Zacher, K. 2014. The susceptibility of spores and propagules of Antarctic seaweeds to UV and photosynthetically active radiation – field versus laboratory experiments. Journal of Experimental Marine Biology and Ecology 458: 5763.CrossRefGoogle Scholar