Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T12:42:18.280Z Has data issue: false hasContentIssue false

Vegetation mapping of Svalbard utilising Landsat TM/ETM+ data

Published online by Cambridge University Press:  29 November 2011

Bernt E. Johansen
Affiliation:
Northern Research Institute - Tromsø, Tromsø Science Park, N-9294 Tromsø, Norway (bernt.johansen@norut.no)
Stein Rune Karlsen
Affiliation:
Northern Research Institute - Tromsø, Tromsø Science Park, N-9294 Tromsø, Norway (bernt.johansen@norut.no)
Hans Tømmervik
Affiliation:
Norwegian Institute for Nature Research, The Polar Environmental Centre, N-9296 Tromsø, Norway

Abstract

The overall objective of this paper is to present and discuss the most recently developed vegetation map for Svalbard, Arctic Norway. The map is based on satellite images in which several Landsat TM/ETM+ images were processed through six operational stages involving: (1) automatic image classification, (2) spectral similarity analysis, (3) generation of classified image mosaics, (4) ancillary data analysis, (5) contextual correction, and (6) standardisation of the final map products. The developed map is differentiated into 18 map units interpreted from 37 spectral classes. Among the 18 units separated, six of the units comprise rivers, lakes and inland waters, glaciers, as well as non- to sparsely vegetated areas. The map unit 7 is a result of shadow effects and different types of distortions in the satellite image. The vegetation of the remaining eleven units varies from dense marshes and moss tundra communities to sparsely vegetated polar deserts and moist gravel snowbeds. The accuracy of the map is evaluated in areas were access to traditional maps have been available. The vegetation density and fertility is reflected in computed NDVI values. The map product is in digital format, which gives the opportunity to produce maps in different scales. A map sheet portraying the entire archipelago is one of the main products from this study, produced at a scale of 1:500,000.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, K., Foldvik, A., and Hillman, S.R.. 1987. The west Spitsbergen current: structure and disposition. Journal of Geophysical Research 92: 37783784.CrossRefGoogle Scholar
Bengtson, S.-A. 1999. Terrestrisk liv på Svalbard. Beskrivelse av miljøforhold og økologiske forutsetninger. In: Bengtson, S-A, Mehlum, F., and Severinsen, T. (editors). Svalbardtundraens økologi. Norsk Polarinstitutt Meddelelser 150: 2131.Google Scholar
Bhatt, U.S., Walker, D.A., Raynolds, M.K., Comiso, J.C., Epstein, H.E., Jia, G.J., Gens, R., Pinzon, J.E., Tucker, C.J., Tweedie, C.E., and Webber, P.J.. 2010. Circumpolar Arctic tundra vegetation change is linked to sea-ice decline. Earth Interactions.14 (8):120.CrossRefGoogle Scholar
Billings, W.D. 1987. Constraints to plant growth, reproduction, and establishment in Arctic regions. Arctic and Alpine Research 19 (4): 357365.CrossRefGoogle Scholar
Brattbakk, I. 1981. Kvadehuksletta, Brøggerhalvøya, Svalbard. Vegetasjonskart 1:10.000 [Vegetation map of Kvadehuksletta area, Svalbard]. Trondheim: Det Kongelig Norske Videnskaps Selskaps. Museum Botanisk Avdeling. University of Trondheim.Google Scholar
Brattbakk, I. 1985. Vegetasjonskart Reinsdyrflya, Svalbard, 1: 20000 [Vegetation map of the Reinsdyrflya area, Svalbard]. 4 map sheets]. Trondheim: Det Kongelig Norske Videnskaps Selskaps. Museum Botanisk Avdeling. University of Trondheim.Google Scholar
Brattbakk, I. 1986a. Vegetasjonsregioner – Svalbard og Jan Mayen. Målestokk 1:1 mill. [Vegetation regions on Svalbard and Jan Mayen, scale 1:1 mill]. Nasjonalatlas for Norge. Hovedtema 4: Vegetasjon og dyreliv. Kartblad 4. Hønefoss: Statens Kartverk.Google Scholar
Brattbakk, I. 1986b. Flora and vegetation. In: Oritsland, N.A. (editor). Svalbardreinen og dens livsgrunnlag. Oslo. Universitetsforlaget: 1534.Google Scholar
Chapin III, F. S., Sturmm, M., Serreze, M. C., McFadden, J. P., Key, J. R., Lloyd, A. H., McGuire, A. D., Rupp, T. S., Lynch, A. H., Schimel, J. P., Beringer, J., Chapman, W. L., Epstein, H. E., Euskirchen, E. S., Hinzman, L. D., Jia, G., Ping, C.-L., Tape, K. D., Thompson, C. D. C., Walker, D. A. and Welker, J. M.. 2005. Role of land-surface changes in arctic summer warming. Science 310: 657660.CrossRefGoogle Scholar
CAVM (Circumpolar Arctic Vegetation Map) Team. 2003. Circumpolar arctic vegetation map. Scale 1:7,500,000. Conservation of Arctic Flora and Fauna (CAFF) Map. No. 1. Anchorage: U.S. Fish and Wildlife Service.Google Scholar
Duda, R.O., and Hart, P.E.. 1973. Pattern classification and scene analysis. New York: Willey-Interscience.Google Scholar
Elvebakk, A. 1994. A survey of plant associations and alliances from Svalbard. Journal of Vegetation Science 5: 791802.CrossRefGoogle Scholar
Elvebakk, A. 1999. Bioclimatic delimitation and subdivision of the Arctic. In: Nordal, I., and Razzhivin, V.Y. (editors). The species concept in the high north – A panarctic flora initiative. Skrifter Norske Videnskaps-Akademi 38: 81112.Google Scholar
Elvebakk, A., Elven, R., and Razzhivin, V.Y.. 1999. Delimitation, zonal and sectorial subdivision of the Arctic. In: Nordal, I, and Razzhivin, V.Y. (editors). The species concept in high north – a panarctic flora initiative. Skrifter Norske Videnskap-Akademi 38: 375386.Google Scholar
Elvebakk, A. 2005. A vegetation map of Svalbard on the scale 1:3.5 mill. Phytocoenologia 35 (4): 951967.CrossRefGoogle Scholar
Elvebakk, A., and Nilsen, L.. 2002. Indre Wijdefjorden med sidefjordar: et botanisk unikt steppeområde. Tromsø: Universitetet I Tromsø Insititutt for biologi (Rapport til Sysselmannen).Google Scholar
Elven, R., Eriksen, M.B., Elvebakk, A., Johansen, B.E., and Engelskjøn, T.. 1990. Gipsdalen, central Svalbard; flora, vegetation, and botanical values. In: Brekke, B., and Hansson, R. (editors). Environmental atlas Gipsdalen, Svalbard. Vol. II. Norsk Polarinstitutt. Rapport 61: 2766.Google Scholar
Gascard, J.-C., Richez, C., and Rouault, C.. 1995. New insights on large-scale oceanography in Fram Strait: the West Spitsbergen Current. In: Smith, W., and Grebmeier, J. (editors). Oceanography of the Arctic: marginal ice zones and continental shelves. Washington D.C.: American Geophysical Union (Coastal and Estuarine Studies Series): 131182.CrossRefGoogle Scholar
Hagen, J.O., Liestøl, O., Roland, E., and Jørgensen, T.. 1993. Glacier atlas of Svalbard and Jan Mayen. Norsk Polarinstitutt Meddelelser 129: 1160.Google Scholar
Heinemeijer, H.D., and van Dijk, A.J.. 2004. Rosenbergdalen, green valley in the barren land of Edgeøya, Spitsbergen. In: Boschman, N., and Hacquebord, L. (editors). Permanence in diversity. Netherlands ecological research on Edgeøya, Spitsbergen. Circumpolar Studies 1: 4569.Google Scholar
Homer, C.G., Ramsey, D., Edwards, T.C. Jr., and Falconer, A.. 1997. Landscape cover-type mapping and modelling using a multi-scene thematic mapper mosaic. Photogrammetric Engineering and Remote Sensing 63: 5967.Google Scholar
Hoffer, R., Flemming, M., and Cray, R.. 1975. Natural resourse mapping in mountain terrain by computer analysis of ERTS-1 sattelite data. West Lafayette IN: Purdue University, Agricultural Experiment Station and Laboratory for Applications of Remote Sensing (Research bulletin 919).Google Scholar
Jensen, R.A., Madsen, J., O'Connel, M., Wisz, M.S., Tømmervik, H., and Mehlum, F.. 2008. Prediction of the distribution of Arctic-nesting pink-footed geese under a warmer climate scenario. Global Change Biology 14: 110, doi: 10.1111/j.1365–2486.2007.01461.CrossRefGoogle Scholar
Jia, G.J., Epstein, H.E., and Walker, D.A.. 2002. Spatial characteristics of AVHRR-NDVI along latitudinal transects in northern Alaska. Journal of Vegetation Science 13: 315326.CrossRefGoogle Scholar
Jia, G.J., Epstein, H.E., and Walker, D.A.. 2003. Greening of arctic Alaska, 1981–2001. Geophysical Research Letters 30: 2067.CrossRefGoogle Scholar
Jia, G.J., Epstein, H.E., and Walker, D.A.. 2009. Vegetation greening in the Canadian Arctic related to decadal warming. Journal of Environmental Monitoring 11: 22312238.CrossRefGoogle ScholarPubMed
Johansen, B., Tømmervik, H., and Karlsen, S.R.. 2009. Vegetasjonskart over Svalbard basert på satellittdata. Dokumentasjon av metoder og vegetasjonsbeskrivelser. NINA Rapport 456: 154.Google Scholar
Karlsen, S.R., Elvebakk, A., and Johansen, B.. 2005. A vegetation-based method to map climatic variation in the arctic-boreal transition area of Finnmark, north-easternmost Norway. Journal of Biogeography 32: 11611186.CrossRefGoogle Scholar
Keeling, C.D., Chin, J.S.F, and Whorf, T.P.. 1996. Increased activity of northern vegetation inferred from atmostheric CO2 measurements. Nature 382: 146149.CrossRefGoogle Scholar
Kullmann, L. 2002. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. Journal of Ecology 90: 6877.CrossRefGoogle Scholar
Landis, J.R., and Koch, G.G.. 1977. Measurement of observer agreement for categorical data. Biometrics 33: 159174CrossRefGoogle ScholarPubMed
Loeng, H., 1991. Features of the physical oceanographic conditions of the Barents Sea. Polar Research 10: 518.CrossRefGoogle Scholar
Maxwell, E.L. 1976. Multivariate system analysis of multispectral imagery. Photogrammetric Engineering and Remote Sensing 42: 11731186.Google Scholar
Moen, A. 1999. National atlas of Norway: vegetation. Hønefoss: Norwegian Mapping Authority.Google Scholar
Møller, I. 2000. Pflanzensoziologische und vegetationsøkologische Studien in Nordwest-spitzbergen. Mitteilungen der Geographischen Gesellschaft in Hamburg 90: 1202.Google Scholar
Niblack, W. 1986. An introduction to digital image processing. Prentice-Hall International. Ltd.Google Scholar
Nilsen, L., Brossard, T., and Joly, D.. 1999a. Mapping plant communities in a local Arctic landscape applying a scanned infrared aerial photograph in a geographical information system. International Journal of Remote Sensing 20:463480.CrossRefGoogle Scholar
Nilsen, L., Brossard, T., Joly, D., and Elvebakk, A.. 1999b. Mapping and analysing Arctic vegetation; evaluating a method coupling numerical classification of vegetation data with SPOT satellite data in a probability model. International Journal of Remote Sensing 20: 29472977.CrossRefGoogle Scholar
Odasz-Albrigtsen, A-M. 1999. Svalbardreinens påvirkning av tundravegetasjonen. In: Bengtson, S.-A., Mehlum, F., and Severinsen, T. (editors). Svalbardtundraens økologi. Norsk Polarinstitutt Meddelelser 150: 95103.Google Scholar
Pfirman, S.L., Bauch, D., and Gammelsrod, T.. 1994: The Northern Barents Sea: water mass distribution and modification. In: Johannessen, O.M., Muench, R.D., and Overland, J.E. (editors). The polar oceans and their role in shaping the global environment. Washington D.C.: American Geophysical Union (Geophysical Monograph Series 85): 7794.Google Scholar
Razzhivin, V.Y. 1999. Zonation of vegetation in the Russian Arctic. In: Nordal, I., and Razzhivin, V.Y. (editors). The species concept in high north – a panarctic flora initiative. Skrifter Norske Videnskap-Akademi 38: 113130.Google Scholar
Rønning, O.I. 1965. Studies in Dryadion of Svalbard. Norsk Polarinstitutt Skrifter 134: 152.Google Scholar
Rønning, O.I. 1996. The flora of Svalbard. 3rd edition. Oslo: Norwegian Polar Institute.Google Scholar
Speed, J.D.M., Woodin, S.J., Tømmervik, H., Tamsdorf, M.P., and Van der Wal, R.. 2009. Predicting habitat utilisation and extent of ecosystem disturbance by an increasing herbivore population. Ecosystems 12: 349359.CrossRefGoogle Scholar
Spjelkavik, S. 1995. A satellite-based map compared to a traditional vegetation map of Arctic vegetation in the Ny-Ålesund area, Svalbard. Polar Record 31: 257269.CrossRefGoogle Scholar
Tape, K.E.N., Sturm, M., and Racine, C.. 2006. The evidence for shrub expansion in Northern Alaska and the pan-Arctic. Global Change Biology 12: 686702.CrossRefGoogle Scholar
Tuhkanen, S. 1984. A circumboreal system of climatic-phytogeographic regions. Acta Botanica Fennica 126: 150.Google Scholar
van Genderen, J. L., Lock, B.F., and Vass, P.A.. 1978. Remote sensing: statistical testing for thematic map accuracy. Remote Sensing of Environment 7: 314.CrossRefGoogle Scholar
Vanderpuye, A.W., Elvebakk, A., and Nilsen, L.. 2002. Plant communities along environmental gradients of high-arctic mires in Sassendalen, Svalbard. Journal of Vegetation Science 13: 875884.CrossRefGoogle Scholar
Vogelmann, J.E., Sohl, T., and Howard, S.M.. 1998. Regional characterization of land cover using multiple sources of data. Photogrammetric Engineering and Remote Sensing 64 (1): 4557.Google Scholar
Ward, J.H. 1963. Hierarchical grouping to optimise an objective function. Journal of the American Statistical Association 58: 236244.CrossRefGoogle Scholar
Walker, D.A., Epstein, H.E., Jia, G.J., Balser, A., Copass, C., Edwards, E.J., Gould, W.A., Hollingsworth, J., Knudson, J., Maier, H.A., Moody, A., and Raynolds, M.K.. 2003. Phytomass, LAI, and NDVI in northern Alaska: relationship to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. Journal of Geophysical Research–Atmospheres 108 (D2): 8169, doi:10.1029/2001JD000986,2003.CrossRefGoogle Scholar
Wiegand, T., Snyman, H.A., Kellner, K., and Paruelo, J.M.. 2004. Do grasslands have a memory? Modeling phytomass production of a semiarid South African grassland. Ecosystems 7: 243258.CrossRefGoogle Scholar
Wilson, R.O., and Tueller, P.T.. 1987. Aerial and ground spectral characteristics of rangeland plant communities Nevada. Remote Sensing of Environment 23: 177191.CrossRefGoogle Scholar
Zonneveld, I.S., Lebouille, M., and de Nies, N.. 2004. Landscape ecology (‘land unit’) map of Edgeøya, Spitsbergen with emphasis on vegetation. In: Boschman, N., and Hacquebord, L. (editors). Permanence in diversity. Netherlands ecological research on Edgeøya, Spitsbergen. Circumpolar Studies 1: 103156.Google Scholar