Published online by Cambridge University Press: 04 January 2017
In this study, we propose a model of individual voter behavior that can be applied to aggregate data at the district (or precinct) levels while accounting for differences in political preferences across districts and across voters within each district. Our model produces a mapping of the competing candidates and electoral districts on a latent “issues” space that describes how political preferences in each district deviate from the average voter and how each candidate caters to average voter preferences within each district. We formulate our model as a random-coefficients nested logit model in which the voter first evaluates the candidates to decide whether or not to cast his or her vote, and then chooses the candidate who provides him or her with the highest value. Because we allow the random coefficient to vary not only across districts but also across unobservable voters within each district, the model avoids the Independence of Irrelevant Alternatives Assumption both across districts and within each district, thereby accounting for the cannibalization of votes among similar candidates within and across voting districts. We illustrate our proposed model by calibrating it to the actual voting data from the first stage of a two-stage state governor election in the Brazilian state of Santa Catarina, and then using the estimates to predict the final outcome of the second stage.