Published online by Cambridge University Press: 15 May 2020
List experiments are a widely used survey technique for estimating the prevalence of socially sensitive attitudes or behaviors. Their design, however, makes them vulnerable to bias: because treatment group respondents see a greater number of items (J + 1) than control group respondents (J), the treatment group mean may be mechanically inflated due simply to the greater number of items. The few previous studies that directly examine this do not arrive at definitive conclusions. We find clear evidence of inflation in an original dataset, though only among respondents with low educational attainment. Furthermore, we use available data from previous studies and find similar heterogeneous patterns. The evidence of heterogeneous effects has implications for the interpretation of previous research using list experiments, especially in developing world contexts. We recommend a simple solution: using a necessarily false placebo statement for the control group equalizes list lengths, thereby protecting against mechanical inflation without imposing costs or altering interpretations.
Research carried out under NUS-IRB S-18-343 from the National University of Singapore. We would like to thank Edmund Malesky, Steven Oliver, Tom Pepinsky, and Risa Toha, for insightful comments and suggestions. All errors are ours. Supplementary materials can be found at http://guillemriambau.com/