Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T13:57:05.579Z Has data issue: false hasContentIssue false

Aspects of solid state formation and properties of Sn0.9Ti0.1O2 system doped with CoO and Nb2O5

Published online by Cambridge University Press:  06 March 2012

Daniela Russo Leite
Affiliation:
Departamento de Físico Química, Instituto de Química, Universidade Estadual Paulista, Rua Prof. Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, São Paulo, Brazil
Márcio de Sousa Góes*
Affiliation:
Departamento de Físico Química, Instituto de Química, Universidade Estadual Paulista, Rua Prof. Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, São Paulo, Brazil
Paulo Roberto Bueno
Affiliation:
Departamento de Físico Química, Instituto de Química, Universidade Estadual Paulista, Rua Prof. Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, São Paulo, Brazil
José Arana Varela
Affiliation:
Departamento de Físico Química, Instituto de Química, Universidade Estadual Paulista, Rua Prof. Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, São Paulo, Brazil
Carlos de Oliveira Paiva-Santos
Affiliation:
Departamento de Físico Química, Instituto de Química, Universidade Estadual Paulista, Rua Prof. Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, São Paulo, Brazil
Mario Cilense
Affiliation:
Departamento de Físico Química, Instituto de Química, Universidade Estadual Paulista, Rua Prof. Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, São Paulo, Brazil
*
a)Author to whom correspondence should be addressed. Electronic mail: marcgoes@iq.unesp.br; Tel +55 16 33016640; Fax: +55 16 33227932

Abstract

The effect of calcination temperature during the formation of the solid solution Sn0.9Ti0.1O2 doped with 1.00 mol % CoO and 0.05 mol % Nb2O5 is presented. The structural characteristics of this system were studied using X-ray diffraction, and the changes in phase formation were analyzed using the Rietveld method. With an increase in calcination temperature, there is increasing miscibility of Ti into the (Ti,Sn)O2 phase and near 1000 °C, and the remaining TiO2 (anatase) was transformed into the rutile phase. The sintering process, monitored using dilatometry, suggests two mass transport mechanisms, one activated close to 900 °C associated with the presence of TiO2 (anatase) and the second mechanism, occurring between 1200 and 1300 °C, is attributed to a faster grain boundary diffusion caused by oxygen vacancies.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antunes, A.C., Antunes, S.R. M., Pianaro, S.A., Rocha, M.R., Longo, E., and Varela, J.A. (1998). “Nonlinear electrical behaviour of the SnO2.CoO.Ta2O5 system,” J. Mater. Sci. Lett.JMSLD5 17, 577579. jml, JMSLD5 Google Scholar
Bueno, P.R., Camargo, E., Longo, E., Leite, E., Pianaro, S.A., and Varela, J.A. (1996). “Effect of Cr2O3 in the varistor behaviour of TiO2,” J. Mater. Sci. Lett.JMSLD5 15, 20482050. jml, JMSLD5 CrossRefGoogle Scholar
Bueno, P.R., Cassia-Santos, M.R., Simões, L.G. P., Gomes, J.W., Longo, E., and Varela, J.A. (2002). “Low-voltage varistor based on (Sn,Ti)O2 ceramics,” J. Am. Ceram. Soc.JACTAW 85, 282284. jac, JACTAW CrossRefGoogle Scholar
Bueno, P.R., Leite, E.R., Bulhões, L.O. S., Longo, E., and Paiva-Santos, C.O. (2003). “Sintering and mass transport features of (Sn,Ti)O2 polycrystalline ceramics,” J. Eur. Ceram. Soc.JECSER 23, 887896. jeu, JECSER Google Scholar
Carney, C.M., Yoo, S., and Akbar, S.A. (2005). “TiO2-SnO2 nanostructure and their H2 sensing behavior,” Sens. ActuatorsSEACDX, 108, 2933. sea, SEACDX Google Scholar
Cerri, J.A., Leite, E.R., Gouvêa, D., Longo, E., and Varela, J.A. (1996). “Effect of cobalt(II) oxide and manganese(IV) oxide on sintering of tin(IV) oxide,” J. Am. Ceram. Soc.JACTAW 79, 799804. jac, JACTAW Google Scholar
Coles, G.S. V., Williams, G., and Smith, B. (1991). “Selectivity studies on tin oxide-based semiconductor gas sensors,” Sens. ActuatorsSEACDX 3, 714. sea, SEACDX Google Scholar
Cox, P.A., Egdell, R.G., Harding, C., Patterson, W.R., and Tavener, P.J. (1982). “Surface properties of antimony doped tin(IV) oxide: A study by electron spectroscopy,” Surf. Sci.SUSCAS 123, 179203. sus, SUSCAS Google Scholar
Ferrere, S., Zaban, A., and Gregg, B.A. (1997). “Dye sensitization of nanocrystalline tin oxide by perylene derivatives,” J. Phys. Chem. BJPCBFK 101, 44904493. bfk, JPCBFK CrossRefGoogle Scholar
Finger, L.W., Cox, D.E., and Jephcoat, A.P. (1994). “Correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr.JACGAR 27, 892900. acr, JACGAR CrossRefGoogle Scholar
Gouvêa, D., Smith, A., Bonnet, J.P., and Varela, J.A. (1996). “Manganese segregation on the surface of SnO2 based powders,” Eur. J. Solid State Inorg. Chem.EJSCE5 33, 10151023. ess, EJSCE5 Google Scholar
Jarzebski, Z.M. and Marton, J.P. (1976a). “Physical properties of SnO2 materials I. preparation and defect structure,” J. Electrochem. Soc.JESOAN 123, 199C205C. jes, JESOAN Google Scholar
Jarzebski, Z.M. and Marton, J.P. (1976b). “Physical properties of SnO2 materials II. electrical properties,” J. Electrochem. Soc.JESOAN 123, 299C310C. jes, JESOAN Google Scholar
Kulshreshtha, S.K., Sasikala, R., and Sudarsan, V. (2001). “Non-random distribution of cations in Sn1−xTixO2(0.0≤x≤1.0): a 119 Sn MAS NMR study,” J. Mater. Chem.JMACEP 11, 930935. jtc, JMACEP CrossRefGoogle Scholar
Larson, A.C. and Von Dreele, R.B. (2000). General Structure Analysis System (GSAS) (Report LAUR 86–748), (Los Alamos National Laboratory, Los Alamos, New Mexico).Google Scholar
Li, M. and Chen, Y. (1996). “An investigation of response time of TiO2 thin-film oxygen sensors,” Sens. ActuatorsSEACDX 32, 8385. sea, SEACDX CrossRefGoogle Scholar
Nambu, S. and Oiji, M. (1991). “Coherent phase-diagram for spinodal decomposition in the tetragonal titanium dioxide-tin oxide system,” J. Am. Ceram. Soc.JACTAW 74, 19101915. jac, JACTAW CrossRefGoogle Scholar
Nowotny, J., Radecka, M., and Rekas, M. (1997). “Semiconducting properties of undoped TiO2,” J. Phys. Chem. SolidsJPCSAW 58, 927937. jpx, JPCSAW CrossRefGoogle Scholar
Park, M., Mitchell, T.E., and Heuer, A.H. (1975). “Subsolidus equilibria in the TiO2-SnO2 system,” J. Am. Ceram. Soc.JACTAW 58, 4347. jac, JACTAW Google Scholar
Pianaro, S.A., Bueno, P.R., Longo, E., and Varela, J.A. (1995). “A new SnO2-based varistor system,” J. Mater. Sci. Lett.JMSLD5 14, 692694. jml, JMSLD5 CrossRefGoogle Scholar
Pianaro, S.A., Bueno, P.R., Olivi, P., Longo, E., and Varela, J.A. (1998). “Electrical properties of the SnO2-based varistor,” J. Mater. Sci.: Mater. Electron.JSMEEV 9, 159165. eev, JSMEEV Google Scholar
Radecka, M., Pasierb, P., Zakrzewska, K., and Rekas, M. (1999). “Transport properties of (Sn,Ti)O2 polycrystalline ceramics and thin films,” Solid State IonicsSSIOD3 119, 4348. ssi, SSIOD3 CrossRefGoogle Scholar
Sermon, P.A. and Walton, T.J. (1997). “Pt-doped and SnO2-templated TiO2: properties and reactivity towards CO,” Solid State IonicsSSIOD3 101, 673676. ssi, SSIOD3 Google Scholar
Sousa, V.C., Leite, E.R., and Longo, E. (2002). “The effect of Ta2O5 and Cr2O3 on the electrical properties of TiO2 varistors,” J. Eur. Ceram. Soc.JECSER 22, 12771283. jeu, JECSER CrossRefGoogle Scholar
Stephens, P.W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr.JACGAR 32, 281289. acr, JACGAR CrossRefGoogle Scholar
Stucki, F. and Greuter, F. (1990). “Key role of oxygen at zinc oxide varistor grain boundaries,” Appl. Phys. Lett.APPLAB 57, 446448. apl, APPLAB CrossRefGoogle Scholar
Takahashi, J., Kuwayama, M., Kamiya, H., Takatsu, M., Oota, T., and Yamai, I. (1988). “Decomposition behaviours of dopant-free and doped solid solutions in the TiO2-SnO2 system,” J. Mater. Sci.JMTSAS 23, 337342. jmt, JMTSAS CrossRefGoogle Scholar
Toby, B.H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr.JACGAR 34, 210213. acr, JACGAR Google Scholar
Wang, Y., Jiang, X., and Xia, Y. (2003). “A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions,” J. Am. Chem. Soc.JACSAT 125, 1617616177. acs, JACSAT Google Scholar
Yan, M.F. and Rhodes, W.W. (1982). “Preparation and properties of TiO2 varistors,” Appl. Phys. Lett.APPLAB 40, 536537. apl, APPLAB CrossRefGoogle Scholar
Young, R.A. and Desai, P. (1989). “Crystallite size and microstrain indicators in Rietveld refinement,” Archiwum Nauki o Materialach (Arch. Mater. Sci.) 10, 7190.Google Scholar
Yuan, T.C. and Virkar, A.V. (1988). “Kinetics of spinodal decomposition in the TiO2-SnO2 system: The effect of aliovalent dopants,” J. Am. Ceram. Soc.JACTAW 71, 1221. jac, JACTAW Google Scholar
Zaharescu, M., Mihaiu, S., Zuca, S., and Matiasovsky, K. (1991). “Contribution to the study of SnO2-based ceramics-Part I,” J. Mater. Sci.JMTSAS 26, 16661672. jmt, JMTSAS Google Scholar