Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T08:01:49.850Z Has data issue: false hasContentIssue false

Automatic calibration of powder diffraction experiments using two-dimensional detectors

Published online by Cambridge University Press:  01 March 2012

P. Rajiv
Affiliation:
Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
B. Hinrichsen
Affiliation:
Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
R. Dinnebier
Affiliation:
Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
M. Jansen
Affiliation:
Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
M. Joswig
Affiliation:
Institute for Geophysics, Stuttgart University, Azenbergstraße 16, 70174 Stuttgart, Germany

Abstract

Calibration of powder diffraction experiments using area detectors is essential to extract high quality one-dimensional powder diffraction pattern. Precise calibration necessitates a sensible characterization of the Debye-Scherrer rings formed on the detector plane. An algorithm, designed and developed to automate this process, is described in this paper. All the parameters required for an experimental calibration are extracted using robust pattern recognition techniques. Several image preprocessing methods are employed, reducing the computational cost but retaining high signal quality. A modified version of a one-dimensional Hough transformation is used to determine the final parameters of the ellipses. After extraction, the parameters are optimized using nonlinear least squares fit. The presented algorithm is insensitive to image artefacts and was successfully applied to a large number of calibration images. The performance of the algorithm is demonstrated by the comparison of results obtained from the presented automatic calibration method and an existing manual method.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennett, N., Burridge, R., and Saito, N. (1999). “A method to detect and characterize ellipses using Hough transform,” IEEE Trans. Pattern Anal. Mach. Intell.ITPIDJ10.1109/34.777377 21, 652657.CrossRefGoogle Scholar
Bevington, R. P. (1969). Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York).Google Scholar
Cervellino, A., Giannini, C., Guagliardi, A., and Ladisa, M. (2006). “Folding a two-dimensional powder diffraction image into a one-dimensional scan: a new procedure,” J. Appl. Crystallogr.JACGAR10.1107/S0021889806026690 39, 745748.CrossRefGoogle Scholar
Chellali, R. and Fremont, V. (2003). “Ellipse detection using Hough Transform,” 13th International Conference on Artificial Reality and Telexistence,Tokyo, Japan.Google Scholar
Dammer, C., Leleux, P., Villers, D., and Dosiere, M. (1997). “Use of Hough Transform to determine the center of digitized X-ray diffraction patterns,” Nucl. Instrum. Methods Phys. Res. BNIMBEU10.1016/S0168-583X(97)00440-0, 132, 214220.CrossRefGoogle Scholar
Feng, L. and Fainman, Y. (1992). “Detection of a general ellipse by an optical Hough transform,” Appl. Opt.APOPAI 31, 32593262.CrossRefGoogle ScholarPubMed
Fisker, R., Poulson, H. F., Schou, J., Carstensen, J. M., and Garbe, S. (1998). “Use of images-processing tools for texture analysis of high-energy synchrotron data,” J. Appl. Crystallogr.JACGAR10.1107/S0021889897016439 31, 647653.CrossRefGoogle Scholar
Fung, P. F., Lee, W. S., and King, I. (1996). “Randomized generalized Hough Transform for 2-D grayscale object detection,” Proceedings of International Conference on Pattern Recognition,Vienna, Austria.Google Scholar
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., and Häusermann, D. (1996). “Two-dimensional detector software: from real detector to idealized image or two-theta scan,” High Press. Res.HPRSEL 14, 235248.CrossRefGoogle Scholar
Hinrichsen, B., Dinnebier, R. E., Rajiv, P., Hanfland, M., Grzechnik, A., and Jansen, M. (2006). “Advances in data reduction of high pressure X-ray powder diffraction data from two dimensional detectors: A case study of Schafarzikite (FeSb2O4),” J. Phys.: Condens. MatterJCOMEL10.1088/0953-8984/18/25/S09 18, S1021S1037.Google ScholarPubMed
Hough, P. V. C. (1962). “Methods and Means for Recognizing Complex Patterns,” U.S. Patent No. 3,069,654.Google Scholar
Kanatani, K. and Ohta, N. (2001). “Automatic detection of circular objects by ellipse growing,” Mem. Faculty Eng. Okayama Univ. 36, 107116.Google Scholar
Lei, Y. and Wong, K. C. (1999). “Ellipse detection based on symmetry,” Pattern Recogn. Lett.PRLEDG10.1016/S0167-8655(98)00127-5 20, 4147.CrossRefGoogle Scholar
Norby, P. (1997). “Synchrotron powder diffraction using imaging plates: crystal structure determination and Rietveld Refinement,” J. Appl. Crystallogr.JACGAR10.1107/S0021889896009995 30, 2130.CrossRefGoogle Scholar
Pecharsky, V. K. and Zavalij, P. Y. (2003). Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer, New York).Google Scholar
Schmidt, C., Dinnebier, R. E., Wedig, U., and Jansen, M. (2007). “Crystal structure and chemical bonding of the high temperature phase of AgN3,” Inorg. Chem. INOCAJ10.1021/ic061963n 46(3), 907916.CrossRefGoogle ScholarPubMed
Schreckenberg, M. and Joswig, M. (1993). “Kompensation von Rippenschatten in digitalen Thorax-Röntgenbildern” in Mustererkennung 1993, edited by Pöppl, S. J. and Handels, H. (Springer-Verlag, Berlin), pp. 522527.CrossRefGoogle Scholar
Wessels, T., Baerlocher, C., and McCusker, L. B. (1999). “Single-crystal-like diffraction data from polycrystalline materials,” ScienceSCIEAS10.1126/science.284.5413.477 284, 477479.CrossRefGoogle ScholarPubMed
William, H. P., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2002). Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. P., Cambridge).Google Scholar
Wunschel, M. (2003). “X-ray Powder Diffraction Studies at non-Ambient Conditions on the Compounds InxNb3Te4 (x=0,0.54) and Si[C(CH3)3]n[Si(CH3)3]4−n (n=0,1,2),” Ph.D. thesis, Universität Bayreuth, Germany, pp. 1944.Google Scholar