Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T09:27:13.308Z Has data issue: false hasContentIssue false

Compositional study of prehistoric pigments (Carriqueo rock shelter, Argentina) by synchrotron radiation X-ray diffraction

Published online by Cambridge University Press:  29 February 2012

Cristina Vázquez*
Affiliation:
Comisión Nacional de Energía Atómica, Buenos Aires, Argentina andUniversidad de Buenos Aires, Buenos Aires, Argentina
Oscar Martín Palacios
Affiliation:
CIAFIC, Universidad de Buenos Aires, Buenos Aires, Argentina
Larysa Darchuk
Affiliation:
Chemistry Department, UIA, Antwerp, Belgium
Lué-Merú Marcó Parra
Affiliation:
Dpto. Química y Suelos, Decanato de Agronomía, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela
*
a)Author to whom correspondence should be addressed. Electronic mail: vazquez@cnea.gov.ar

Abstract

In this work synchrotron radiation X-ray diffraction technique was successfully applied for the analysis of pigments found in excavation at Carriqueo rock shelter, Neuquén, Argentina. The pigment samples of orange, red, and brown shades were collected from different levels of this archaeological site and compared with a suspected source of provenance (La Oficina creek). X-ray diffraction patterns of several yellowish, reddish, and red pigments showed the presence of haematite, goethite, kaolinite, and quartz. The majority of Carriqueo collected samples belonged to the same group of the suspected source, having haematite and quartz as main crystalline phases. The results indicate that the raw material from La Oficina is the source of most of the pigments found at Carriqueo. The present work helps us to understand the strategy of supplying raw materials by human groups in the North Patagonia region.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albornoz, A. (1996). “Sitios con arte rupestre en los alrededores del lago Nahuel Huapi (Río Negro),” in Proceedings Segundas Jornadas de Arqueología de la Patagonia, edited by Otero, J. G. (CENPAT, Madryn), pp. 123133.Google Scholar
Artioli, G. (2008). “Archaeometry: Advances with neutron and synchrotron beams,” The 11th European Powder Diffraction Conference (Pielaszek Research, Poland).Google Scholar
Bar-Yosef Mayer, D. E. (1997), “Miscellaneous Finds: The Marine Shells from Netiv Hagdud,” An Early Neolithic Village in the Jordan Valley, Part I: The Archaeology of Netiv Hagdud, edited by Gopher, A., American School of Prehistoric Research Bulletin 43, pp. 189192.Google Scholar
Bikiaris, D., Daniilia, S., Sotiropoulou, S., Katsimbiri, O., Pavlidou, E., Moutsatsou, A., and Chryssoulakis, Y. (2000). “Ochre-differentiation through micro-Raman and micro-FTIR spectroscopies: Application on wall paintings at Meteora and Mount Athos, Greece,” Spectrochim. Acta, Part A SAMCAS 56, 318.10.1016/S1386-1425(99)00134-1CrossRefGoogle Scholar
Bouza, P. J., Simón, M., Aguilar, A., del Valle, H., and Rostagno, M. (2007). “Fibrous-clay mineral formation and soil evolution in Aridisols of northeastern Patagonia, Argentina,” Geoderma GEDMAB 139, 3850.10.1016/j.geoderma.2007.01.001CrossRefGoogle Scholar
Bugoi, R., Constantinescu, B., Pantos, E., and Popovici, D. (2008). “Investigation of neolithic ceramic pigments using synchrotron radiation X-ray diffraction,” Powder Diffr. PODIE2 23, 195199.10.1154/1.2958068CrossRefGoogle Scholar
Calza, C., Anjos, M. J., Mendonca de Souza, S. M. F., Bracaglion, J. R. A., and Lopes, R. T. (2008). “X-ray microfluorescence with synchrotron radiation applied in the analysis of pigments from ancient Egypt,” Appl. Phys. A: Mater. Sci. Process. APAMFC 90, 7579.10.1007/s00339-007-4234-zCrossRefGoogle Scholar
Cornell, R. M. and Schwertmann, U. (1996). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (VCH, New York).Google Scholar
Crivelli Montero, E., Cordero, A., Palacios, O., and Ramos, M. (2007). “Especialización funcional de sitios durante el período ceramolítico de la cuenca del río limay: El caso del alero carriqueo,” Proceedings XVI Congreso Nacional de Arqueología Argentina (Universidad Nacional de San Salvedor de Jujuy, Argentina), Vol. 3, pp. 339345.Google Scholar
Dillmann, P., Neff, D., Mazaudier, F., Hoerle, S., Chevallier, P., and Beranger, G. (2002). “Characterisation of iron archaeological analogues using micro diffraction under synchrotron radiation. Application to the study of long term corrosion behaviour of low alloy steels,” J. Phys. IV (France)JPICEI 12, 393408.Google Scholar
Fiore, D., Maier, M., Parera, D., Orquera, L., and Piana, E. (2008). “Chemical analyses of the earliest pigment residues from the uttermost part of the planet (Beagle Channel region, Tierra del Fuego, Southern South America),” J. Archaeol. Sci. JASCDU 35, 30473056.10.1016/j.jas.2008.04.003CrossRefGoogle Scholar
Gradín, C., Aguerre, A., and Albornoz, A. (2003). Arqueología de Río Negro (Secretaría de Estado de Acción Social de Río Negro, Argentina).Google Scholar
Hajduk, A., Albornoz, A., and Lezcano, M. (2004). “El mylodon en el patio de atrás Informe preliminar sobre los trabajos en el sitio El Trébol, ejido urbano de San Carlos de Bariloche, prvincia de Río Negro, in Contra viento y marea, Arqueología de Patagonia, edited by Civalero, M. T., Fernández, P., and Guráieb, A. (Instituto Nacional de Antropología y Pensamiento Latinoamericano y Sociedad Argentina de Antropologoía, Buenos Aires, Argentina, pp. 715732 ).Google Scholar
Helwig, K. (1997). “A note on burnt yellow earth pigments: Documentary sources and scientific analysis,” Studies in Conservation 42, 181188.10.2307/1506714CrossRefGoogle Scholar
Helwig, K. (2007). “Iron oxide pigments: Natural and synthetic,” in Artists Pigments—A Handbook of their History and Characteristics, edited by Berrie, B. H. (National Gallery of Art, Washington), Vol. 4, pp. 439495.Google Scholar
Hradil, D., Grygar, T., Hradilová, J., and Bezdička, P. (2003). “Clay and iron oxide pigments in the history,” Appl. Clay Sci. ACLSER 22, 223236.10.1016/S0169-1317(03)00076-0CrossRefGoogle Scholar
JCPDS, International Centre for Diffraction Data. (2001). Card Nos. 29-0713, 46-1045, 33-0664, Swarthmore, PA.Google Scholar
Leach, E. (1976). “Color symbolism” Culture and Communication (Cambridge University Press, Cambridge).10.1017/CBO9780511607684CrossRefGoogle Scholar
Lima, J. C., Barroso, R. C., Braz, D., Droppa, R. Jr., Oliveira, L. F., and Lopes, R. T. (2007). “Evaluation of bone mineral density loss using an X-ray powder diffractometer and synchrotron radiation at LNLS—Brazil,” Nucl. Instrum. Methods Phys. Res. A NIMAER 580, 469472.10.1016/j.nima.2007.05.130CrossRefGoogle Scholar
Mortimore, J. L., Marshall, L. J., Almond, M. J., Hollins, P., and Matthews, W. (2004). “Analysis of red and yellow ochre samples from Clearwell Caves and Catalhöyük by vibrational spectroscopy and other techniques,” Spectrochim. Acta, Part A SAMCAS 60, 1179–88.10.1016/j.saa.2003.08.002CrossRefGoogle ScholarPubMed
Munsell Soil Colour Charts (1994). (MacBeth Division of Kollmorgen Instruments Corp., New York).Google Scholar
Murray, H. H. (2000). “Traditional and new applications for kaolin, smectite, and palygorskite: A general overview,” Appl. Clay Sci. ACLSER 17, 207221.10.1016/S0169-1317(00)00016-8CrossRefGoogle Scholar
Oxford Cryosystems, Inc. (2007). CRYSTALLOGRAPHICA software (Computer software), free version, Oxford, United Kingdom.Google Scholar
Palacios, O. and Ramos, M. (2009). “Alero carriqueo: Análisis de una muestra de instrumentos líticos,” VI Congreso Argentino de Americanistas 15 y 16 de Mayo 2008 en la Universidad del Salvador (Sociedad Argentina de Americanistas, Buenos Aires, Argentina), Vol. 2, pp. 283305.Google Scholar
Parada, E. and Peredo, S. (2008). “Diplodan Patagonicus,” Gayana (Concepción) 72, pp. 266267.Google Scholar
Piszora, P., Nawrocki, J., Darul, J., Nowicki, W., and Evans, A. (2008). “Synchrotron X-ray diffraction studies of products of the steel pipe corrosion measured in the native aqueous suspension,” The 11th European Powder Diffraction Conference (Pielaszek Research, Poland).Google Scholar
Podestá, M. (2003). “Rock art research in Argentina at the end of the millennium,” in Rock Art Studies: News of the World 2. Developments in Rock Art Research 1995–1999, edited by Bahn, P. and Fossati, A. (Oxbow, Oxford), pp. 242251.Google Scholar
Sánchez del Río, M., Gutiérrez-León, A., Castro, G. R., Rubio-Zuazo, J., Solís, C., Sánchez-Hernández, R., Robles-Camacho, J., and Rojas-Gaytán, J. (2008). “Synchrotron powder diffraction on Aztec blue pigments,” Appl. Phys. A: Mater. Sci. Process. APAMFC 90, 5560.10.1007/s00339-007-4264-6CrossRefGoogle Scholar
Simova, V., Bezdicka, P., Hradilova, J., Hradil, D., and Grygar, T. (2005). “X-ray powder microdiffraction for routine analysis of paintings,” Powder Diffr. PODIE2 20, 224229.10.1154/1.1938983CrossRefGoogle Scholar
Tamburini, F., Adatte, T., and Föllmi, K. (2003). “Origin and nature of green clay layers, odp leg 184, South China sea,” in Proceedings of the Ocean Drilling Program, Scientific Results, edited by Prell, W. L., Wang, P., Blum, P., Rea, D. K., and Clemens, S. C., (University of Texas, Texas), Vol. 184, pp. 123.Google Scholar
Trubitt, M. B. D. (2003). “The Production and Exchange of Marine Shell Prestige Goods,” J. Arch. Research 11, pp. 243277.10.1023/A:1025028814962CrossRefGoogle Scholar
Wainwright, K., Helwig, M., Podestá, C., and Bellelli, C. (2000). “Análisis of pigments from rock painting sites in Río Negro and Chubut Provinces,” Arte en las Rocas. Arte Rupestre, Menhires y Piedras de Colores en la Argentina (Sociedad Argentina de Antropología, Buenos Aires), pp. 203206.Google Scholar
Welcomme, E., Walter, P., Bleuet, P., Hodeau, P. J., Dooryhee, E., Martinetto, P., and Menu, M. (2007). “Classification of lead white pigments using synchrotron radiation micro X-ray diffraction,” Appl. Phys. A: Mater. Sci. Process. APAMFC 89, 825832.10.1007/s00339-007-4217-0CrossRefGoogle Scholar