Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T14:13:59.413Z Has data issue: false hasContentIssue false

Crystal structure of 5-(3-methoxyphenyl)indoline-2,3-dione

Published online by Cambridge University Press:  07 June 2023

Anastasia Gorodnova*
Affiliation:
Lomonosov Moscow State University, Moscow, Russian Federation
Vladimir N. Ivanov
Affiliation:
Lomonosov Moscow State University, Moscow, Russian Federation
Alexander V. Kurkin
Affiliation:
Lomonosov Moscow State University, Moscow, Russian Federation
Artem Dmitrienko
Affiliation:
Lomonosov Moscow State University, Moscow, Russian Federation
*
a)Author to whom correspondence should be addressed. Electronic mail: agorodnova6@gmail.com

Abstract

The crystal structure of 5-(3-methoxyphenyl)indoline-2,3-dione (C15H11NO3) was solved and refined using laboratory powder diffraction data and optimized using density functional techniques. The title compound crystallizes in space group Pbca with a = 11.1772(3) Å, b = 7.92536(13) Å, c = 27.0121(7) Å, and V = 2392.82(10) Å3. The asymmetric unit contains one molecule. Isatin molecules are joined into almost flat chains along the a direction by N–H⋯O bonds. The chains are linked into layers by π-stacking interactions. Finally, the third dimension of the crystal is formed by weaker C–H⋯π and C–H⋯O contacts.

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blöchl, P. E. 1994. “Projector Augmented-Wave Method.” Physical Review B 50 (24): 17953–79. doi:10.1103/physrevb.50.17953.CrossRefGoogle ScholarPubMed
Cane, A., Tournaire, M.-C., Barritault, D., and Crumeyrolle-Arias, M.. 2000. “The Endogenous Oxindoles 5-Hydroxyoxindole and Isatin Are Antiproliferative and Proapoptotic.” Biochemical and Biophysical Research Communications 276 (1): 379–84. doi:10.1006/bbrc.2000.3477.CrossRefGoogle ScholarPubMed
Coelho, A. A. 2003. “Indexing of Powder Diffraction Patterns by Iterative Use of Singular Value Decomposition.” Journal of Applied Crystallography 36 (1): 8695. doi:10.1107/s0021889802019878.CrossRefGoogle Scholar
Coelho, A. A. 2018. “Topas and Topas-Academic: An Optimization Program Integrating Computer Algebra and Crystallographic Objects Written in C++.” Journal of Applied Crystallography 51 (1): 210–18. doi:10.1107/s1600576718000183.CrossRefGoogle Scholar
Corso, A. D. 2014. “Pseudopotentials Periodic Table: From H to Pu.” Computational Materials Science 95: 337–50. doi:10.1016/j.commatsci.2014.07.043.CrossRefGoogle Scholar
da Silva, J. F. M., Garden, S. J., and Pinto, A. C.. 2001. “The Chemistry of Isatins: A Review from 1975 to 1999.” Journal of the Brazilian Chemical Society 12 (3): 273324. doi:10.1590/s0103-50532001000300002.CrossRefGoogle Scholar
Donnay, J. D. H., and Harker, D.. 1937. “A New Law of Crystal Morphology Extending the Law of Bravais.” American Mineralogist 22 (5): 446–67.Google Scholar
Favre-Nicolin, V., and Černý, R.. 2002. “FOX, Free Objects for Crystallography: A Modular Approach To Ab Initio Structure Determination from Powder Diffraction.” Journal of Applied Crystallography 35 (6): 734–43. doi:10.1107/s0021889802015236.CrossRefGoogle Scholar
Ferreira, E. S. B., Hulme, A. N., McNab, H., and Quye, A.. 2004. “The Natural Constituents of Historical Textile Dyes.” Chemical Society Reviews 33 (6): 329–36. doi:10.1039/B305697J.CrossRefGoogle ScholarPubMed
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Corso, A. D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., and Wentzcovitch, R. M.. 2009. “QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials.” Journal of Physics: Condensed Matter 21 (39): 395502. doi:10.1088/0953-8984/21/39/395502.Google ScholarPubMed
Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio, R. A. Jr., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.-Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N. L., Nguyen, H.-V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X., and Baroni, S.. 2017. “Advanced capabilities for materials modelling with quantum ESPRESSO.” Journal of Physics: Condensed Matter 29 (46): 465901. doi:10.1088/1361-648X/aa8f79.Google ScholarPubMed
Golen, J. A., and Manke, D. R.. 2016. “4,7-Dichloro-1H-indole-2,3-dione.” IUCrdata 1 (9). doi:10.1107/s2414314616014851.Google Scholar
Grimme, S., Antony, J., Ehrlich, S., and Krieg, H.. 2010. “A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu.” Journal of Chemical Physics 132 (15): 154104. doi:10.1063/1.3382344.CrossRefGoogle ScholarPubMed
Grimme, S., Ehrlich, S., and Goerigk, L.. 2011. “Effect of the Damping Function in Dispersion Corrected Density Functional Theory.” Journal of Computational Chemistry 32 (7): 1456–65. doi:10.1002/jcc.21759.CrossRefGoogle ScholarPubMed
Ivanov, V. N., Agamennone, M., Iusupov, I. R., Laghezza, A., Novoselov, A. M., Manasova, E. V., Altieri, A., Tortorella, P., Shtil, A. A., and Kurkin, A. V.. 2022. “Het(Aryl)Isatin to Het(Aryl)Aminoindoline Scaffold Hopping: A Route to Selective Inhibitors of Matrix Metalloproteinases.” Arabian Journal of Chemistry 15 (1): 103492. doi:10.1016/j.arabjc.2021.103492.CrossRefGoogle Scholar
Kresse, G., and Joubert, D.. 1999. “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method.” Physical Review B 59 (3): 1758–75. doi:10.1103/physrevb.59.1758.CrossRefGoogle Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D., and Spackman, M. A.. 2017. “Crystalexplorer Model Energies and Energy Frameworks: Extension to Metal Coordination Compounds, Organic Salts, Solvates and Open-Shell Systems.” IUCrJ 4 (5): 575–87. doi:10.1107/S205225251700848X.CrossRefGoogle ScholarPubMed
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A.. 2008. “Mercury CSD 2.0 New Features for the Visualization and Investigation of Crystal Structures.” Journal of Applied Crystallography 41 (2): 466–70. doi:10.1107/s0021889807067908.CrossRefGoogle Scholar
Manley-King, C. I., Bergh, J. J., and Petzer, J. P.. 2011. “Inhibition of Monoamine Oxidase by Selected C5- and C6-Substituted Isatin Analogues.” Bioorganic & Medicinal Chemistry 19 (1): 261–74. doi:10.1016/j.bmc.2010.11.028.CrossRefGoogle ScholarPubMed
Markvardsen, A. J., Shankland, K., David, W. I. F., Johnston, J. C., Ibberson, R. M., Tucker, M., Nowell, H., and Griffin, T.. 2008. “Extsym: A Program to Aid Space-Group Determination from Powder Diffraction Data.” Journal of Applied Crystallography 41 (6): 1177–81. doi:10.1107/s0021889808031087.CrossRefGoogle Scholar
Medvedev, A., Buneeva, O., and Glover, V.. 2007. “Biological Targets for Isatin and Its Analogues: Implications for Therapy.” Biologics: Targets and Therapy 1 (2): 151–62. doi:btt-1-151. [pii].Google ScholarPubMed
Mohamed, S., Barnett, S. A., Tocher, D. A., Price, S. L., Shankland, K., and Leech, C. K.. 2008. “Discovery of Three Polymorphs of 7-Fluoroisatin Reveals Challenges in Using Computational Crystal Structure Prediction as a Complement to Experimental Screening.” CrystEngComm. doi:10.1039/b714566g.CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M.. 1996. “Generalized Gradient Approximation Made Simple.” Physical Review Letters 77 (18): 3865–68. doi:10.1103/physrevlett.77.3865.CrossRefGoogle ScholarPubMed
Porada, J. H., Neudörfl, J., and Blunk, D.. 2011. “Synthesis and Supramolecular Organization of 5-(4-Alkylphenyl)Isatin.” Crystal Growth & Design 11 (8): 3648–52. doi:10.1021/cg200700r.CrossRefGoogle Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., and Spackman, M. A.. 2021. “Crystalexplorer: A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals.” Journal of Applied Crystallography 54 (3). doi:10.1107/S1600576721002910.CrossRefGoogle ScholarPubMed
van de Streek, J., and Neumann, M. A.. 2014. “Validation of Molecular Crystal Structures from Powder Diffraction Data with Dispersion-Corrected Density Functional Theory (DFT-D).” Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 70 (6): 1020–32. doi:10.1107/s2052520614022902.CrossRefGoogle ScholarPubMed
Vine, K. L., Locke, J. M., Ranson, M., Pyne, S. G., and Bremner, J. B.. 2007. “In Vitro Cytotoxicity Evaluation of Some Substituted Isatin Derivatives.” Bioorganic & Medicinal Chemistry 15 (2): 931–38. doi:10.1016/j.bmc.2006.10.035.CrossRefGoogle ScholarPubMed
Wei, W.-B., Tian, S., Zhou, H., Sun, J., and Wang, H.-B.. 2010. “5-Chloroindoline-2, 3-Dione.” Acta Crystallographica Section E Structure Reports Online 66 (11): 03024. doi:10.1107/s1600536810042522.CrossRefGoogle Scholar