Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T05:37:14.560Z Has data issue: false hasContentIssue false

Crystal structure of a new HfO(OH)2 oxyhydroxide

Published online by Cambridge University Press:  14 November 2013

N.V. Tarakina*
Affiliation:
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomayskaya str., Ekaterinburg GSP-145, 620990 Russia Experimentelle Physik III, Physikalisches Institut and Wilhelm Conrad Röntgen - Research Centre for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
A.P. Tyutyunnik
Affiliation:
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomayskaya str., Ekaterinburg GSP-145, 620990 Russia
Ya.V. Baklanova
Affiliation:
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomayskaya str., Ekaterinburg GSP-145, 620990 Russia
L.G. Maksimova
Affiliation:
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomayskaya str., Ekaterinburg GSP-145, 620990 Russia
T.A. Denisova
Affiliation:
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomayskaya str., Ekaterinburg GSP-145, 620990 Russia
R.B. Neder
Affiliation:
Crystallography and Structural Physics, University of Erlangen-Nürnberg, Staudtstrasse 3, D-91058, Erlangen, Germany

Abstract

The crystal structure of a new hafnium oxyhydroxide obtained by an ion-exchange reaction from a Li2HfO3 precursor has been solved by a direct method and refined using Rietveld full profile fitting based on X-ray powder diffraction data. HfO(ОН)2 crystallizes in a P21/c monoclinic unit cell (a = 5.5578(5) Å, b = 9.0701(10) Å, c = 5.7174(5) Å, β = 119.746(5)°); its structure can be described as a framework formed by edge-sharing HfO6 octahedra connected to each other via vertices. In addition, an analysis of the atomic pair distribution function obtained using synchrotron radiation was used to confirm the model and to describe fine-structure features.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. and Rizzi, R. (2009). “EXPO2009: structure solution by powder data in direct and reciprocal space,” J. Appl. Crystallogr. 42, 11971202.CrossRefGoogle Scholar
Baklanova, Ya. V., Maksimova, L. G., Denisova, T. A. and Zhuravlev, N. A. (2011). “Finely Dispersed Phases of MO(OH)2 (M=Zr, Hf) Oxyhydroxides,” Bull. Russ. Acad. Sci.: Phys. 75, 11181120.CrossRefGoogle Scholar
Billinge, S. J. L. (1998). Local Structure from Diffraction (Plenum Press, New York), p. 137.Google Scholar
Denisova, T. A., Maksimova, L. G., Polyakov, E. V., Zhuravlev, N. A., Kovyazina, S. A., Leonidova, O. N., Khabibulin, D. F. and Yur'eva, E. I. (2006). “Metatitanic Acid: Synthesis and Properties,” Russ. J. Inorg. Chem. 51, 757766.CrossRefGoogle Scholar
Farrow, C. L., Juhás, P., Liu, J. W., Bryndin, D., Božin, E. S., Bloch, J., Proffen, Th., and Billinge, S. J. L., (2007). “PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals,” J. Phys.: Condens. Matter 19, 335219 (7pp).Google ScholarPubMed
Hodeau, J. L., Marezio, M., Santoro, A., and Roth, R. S. (1982). “Neutron profile refinement of the structures of Li2SnO3 and Li2ZrO3 ,” J. Solid State Chem. 45, 170179.CrossRefGoogle Scholar
Howard, C. J. (1982). “The approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians,” J. Appl. Crystallogr. 15, 615620.CrossRefGoogle Scholar
Knunyants, I. L. (Ed.) (1988). Khimicheskaya Entsiklopediya (Sovetskaya Entsiklopediya, Moscow), Vol. 1, p. 623.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAUR 86-748). Los Alamos, New Mexico: Los Alamos National Laboratory.Google Scholar
Nikolsky, B. P. (Ed.) (1971). Spravochnik khimika (Khimiya, Leningrad), 3rd ed., Vol. 2, p. 1168.Google Scholar
Orera, A., Kuhn, A., and García Alvarado, F. (2005). “Synthesis and Characterization of a H+ Exchanged Zirconate,” Z. Anorg. Allg. Chem. 631, 19911993.CrossRefGoogle Scholar
Tarakina, N. V, Neder, R. B., Denisova, T. A., Maksimova, L. G., Baklanova, Ya. V., Tyutyunnik, A. P., Zubkov, V. G. (2010a). “Defect crystal structure of new TiO(OH)2 hydroxide and related lithium salt Li2TiO3 ,” Dalton Trans. 39, 81688176.CrossRefGoogle ScholarPubMed
Tarakina, N. V., Denisova, T. A., Baklanova, Ya. V., Maksimova, L. G., Zubkov, V. G. and Neder, R. B. (2010b). “Defect Crystal Structure of Low Temperature Modifications of Li2MO3 (M=Ti, Sn) and Related Hydroxides,” Adv. Sci. Technol. (Durnten-Zurich, Switz.) 63, 352357.CrossRefGoogle Scholar
Tarakina, N. V., Neder, R. B., Maksimova, L. G., Shein, I. R., Baklanova, Y. V., and Denisova, T. A. (2011). “Defect crystal structure of TiO(OH)2 and related lithium salt Li2TiO3 ,” Z. Kristallogr. Proc. 1, 431436.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 ,” J. Appl. Cryst. 20, 7983.CrossRefGoogle Scholar
Toby, B. H. (2001). “ EXPGUI, a graphical user interface for GSAS ,” J. Appl. Crystallogr. 34, 210213.CrossRefGoogle Scholar
Yawata, K. (2006) “On Recovering Lithium Ions from Hot Spring Water using Ion Exchanger Monoclinic Titanic Acid,” Tsuruoka Kogyo Koto Senmon Gakko Kenkyu Kiyo [Research Bulletin of the Tsuruoka Technical College] 41, 5356.Google Scholar