Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T09:40:28.056Z Has data issue: false hasContentIssue false

Crystal structure of atropine sulfate monohydrate, (C17H24NO3)2(SO4)·(H2O)

Published online by Cambridge University Press:  20 September 2019

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616, USA North Central College, 131 S. Loomis St., Naperville, Illinois 60540, USA
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273, USA
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

Abstract

The crystal structure of atropine sulfate monohydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Atropine sulfate monohydrate crystallizes in space group P21/n (#14) with a = 19.2948(5), b = 6.9749(2), c = 26.9036(5) Å, β = 94.215(2)°, V = 3610.86(9) Å3, and Z = 4. Each of the two independent protonated nitrogen atoms participates in a strong hydrogen bond to the sulfate anion. Each of the two independent hydroxyl groups acts as a donor in a hydrogen bond to the sulfate anion, but only one of the water molecule hydrogen atoms acts as a hydrogen bond donor to the sulfate anion. The hydrogen bonds are all discrete but link the cations, anion, and water molecule along [101]. Although atropine and hyoscyamine (atropine is racemic hyoscyamine) crystal structures share some features, such as hydrogen bonding and phenyl–phenyl packing, the powder patterns show that the structures are very different. The powder pattern for atropine sulfate monohydrate has been submitted to ICDD for inclusion in the Powder Diffraction File™.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.Google Scholar
Dassault Systèmes (2017). Materials Studio 2018 (BIOVIA, San Diego, CA).Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006). “DASH: a program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. 39, 910915.Google Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.Google Scholar
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: the Powder Diffraction File™,” Powder Diffr. 32(2), 6371.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals - the case of urea,” J. Chem. Phys. 101, 1068610696.Google Scholar
Gore, V., Joshi, R., Tripathi, A. K., Jadhav, M., and Bhandari, S. (2013). “Crystalline atropine sulfate,” International Patent Application WO2014102829 A1.Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge structural database,” Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.. 72, 171179.Google Scholar
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta. 44, 129138.Google Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29(3), 269273.Google Scholar
Kaduk, J. A., Gindhart, A. M., and Blanton, T. N. (2019). “Crystal structure of hyoscyamine sulfate monohydrate, (C17H24NO3)2(SO4)(H2O),” Powder Diffr. (submitted).Google Scholar
Kresse, G. and Furthmüller, J. (1996). “Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Radiat. 15(5), 427432.Google Scholar
Louër, D. and Boultif, A. (2014). “Some further considerations in powder diffraction pattern indexing with the dichotomy method,” Powder Diffr. 29, S7S12.Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.Google Scholar
Materials Design (2016). MedeA 2.20.4 (Materials Design Inc., Angel Fire, NM).Google Scholar
MDI (2017). Jade 9.8 (Materials Data. Inc., Livermore, CA).Google Scholar
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.Google Scholar
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” Acta Crystallogr., Sect. B: Cryst. Eng. Mater. 74, 239252.Google Scholar
Silk Scientific (2013). UN-SCAN-IT 7.0 (Silk Scientific Corporation, Orem, UT).Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.Google Scholar
Tanczos, A. C., Palmer, R. A., Potter, B. S., Saldanha, J. W., and Howlin, B. J. (2004). “Antagonist binding in the rat muscarinic receptor. A study by docking and X-ray crystallography,” Comput. Biol. Chem. 28, 375385.Google Scholar
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia). Available at: http://hirshfeldsurface.netGoogle Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 70(6), 10201032.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Inst. 79, 085105.Google Scholar
Wavefunction, Inc. (2018). Spartan ‘18 Version 1.2.0 (Wavefunction Inc., Irvine, CA).Google Scholar
Wheatley, A. M. and Kaduk, J. A. (2019). “Crystal structures of ammonium citrates,” Powder Diffr. 34, 3543.Google Scholar
Supplementary material: File

Kaduk et al. supplementary material

Kaduk et al. supplementary material 1

Download Kaduk et al. supplementary material(File)
File 2.8 MB
Supplementary material: File

Kaduk et al. supplementary material

Kaduk et al. supplementary material 2

Download Kaduk et al. supplementary material(File)
File 7 KB