Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T00:23:46.627Z Has data issue: false hasContentIssue false

Crystal structure, properties, and diffraction data of a new compound Dy5Co6Sn18

Published online by Cambridge University Press:  29 February 2012

Yeqing Chen
Affiliation:
Key Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi, 530004, China
Bing He
Affiliation:
Key Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi, 530004, China
Jiejun He
Affiliation:
Key Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi, 530004, China
Wei He
Affiliation:
Key Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi, 530004, China
Lingmin Zeng
Affiliation:
Key Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, Guangxi University, Nanning, Guangxi, 530004, China
Liangqin Nong
Affiliation:
College of Physics and Electronic Engineering, Guangxi University for Nationalities, Nanning, Guangxi, 530006, China

Abstract

A new ternary compound Dy5Co6Sn18 was synthesized and studied. The crystal structure of Dy5Co6Sn18 was determined using the Rietveld refinement method. The compound was found to crystallize in tetragonal space group I41/acd, Tb5Rh6Sn18-type structure, with a=13.5598(3) Å, c=7.1470(5) Å, Z=8, and Dcalc=8.789 g/cm3. Measurements of magnetic susceptibility and electrical resistivity on polycrystalline samples were also performed. The Curie–Weiss law was followed, with θp=−15.7 K and μeff=10.61μB. Dy5Co6Sn18 is a spin-glass with a freezing temperature of 6.5 K.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Canepa, F., Cirafici, S., Fornasini, M. L., Manfrinetti, P., Merlo, F., Palenzona, A., and Pani, M. (2000). “Crystal Structure of R 3Co8Sn4 Compounds (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y),” J. Alloys Compd. JALCEU 297, 109113.Google Scholar
Espinosa, G. P. (1980). “Crystal Growth and Crystal-Chemical Investigation of Systems Containing New Superconducting and/or Magnetic Ternary Stannides,” Mater. Res. Bull. MRBUAC 10.1016/0025-5408(80)90013-6 15, 791798.Google Scholar
Fisk, Z., Lambert, S. E., Maple, M. B., Remeika, J. P., Espinosa, G. P., Cooper, A. S., Barz, H., and Oseroff, S. (1982). “Magnetic and Superconducting Properties of Rare-Earth Osmium Stannides,” Solid State Commun. SSCOA4 41, 6367.Google Scholar
François, M., Venturini, G., Malaman, B., and Roques, B. (1990). “Nouveaux Isotypes de CeNiSi2 Dans Les Systemes R-M-X (R=La-Lu, M=metaux des groupes 7 A 11 ET XGe, Sn). I Compositions et Parametres Cristallins,” J. Less-Common Met. JCOMAH 10.1016/0022-5088(90)90381-S 160, 197213.Google Scholar
Hodeau, J. L., Chenavas, J., Marezio, M., and Remeika, J. P. (1980). “The Crystal Structure of SnYb3Rh4Sn12, a New Superconducting Stannide,” Solid State Commun. SSCOA4 10.1016/0038-1098(80)90125-8 36, 839845.Google Scholar
Miraglia, S., Hodeau, J. L., de Bergevin, F., Marezio, M., and Espinosa, G. P. (1987). “Structural Studies by Electron and X-ray Diffraction of the Disordered Phase II’: (Sn1−xTbx)Tb4Rh6Sn18 and (Sn1−xDyx)Dy4Os6Sn18,” Acta Crystallogr. ASBSDK 43, 7683.Google Scholar
Mydosh, J. A. (1993). Spin Glasses: An Experimental Introduction (Taylor and Francis, London).Google Scholar
Pendl, W., Coaquira, J. A. H., Rechenberg, H. R., and Skolozdra, R. V. (2002). “Mössbauer Investigation of RCo3Sn Compounds (R=GdTm),” J. Alloys Compd. JALCEU 346, 6267.Google Scholar
Pöttgen, R. (1995). “Dy3Co6Sn5—A New Stannide With an Ordered La3Al11-type Structure,” Z. Naturforsch., B: Chem. Sci. ZNBSEN 50, 175179.Google Scholar
Salamakha, P., Sologub, O., Righi, L., and Bocelli, G. (2000). “Single Crystal Investigation of DyCoSn,” J. Alloys Compd. JALCEU 302, L3L5.Google Scholar
Salamakha, P., Sologub, O., Bocelli, G., Otani, S., and Takabatake, T. (2001). “Dy117Co57Sn112, a New Structure Type of Ternary Intermetallic Stannides With a Giant Unit Cell,” J. Alloys Compd. JALCEU 10.1016/S0925-8388(00)01212-3 314, 177180.Google Scholar
Skolozdra, R. V. and Koreckaja, O. E. (1984). “Magnetic Properties and Crystal Structure of RCo6Sn6 Compounds (R=Y, Tb, Dy, Ho, Er, Tm, Lu),” Ukr. Fiz. Zh. UFZHFY 29, 877879.Google Scholar
Skolozdra, R. V., Koretskaya, O. E., and Akselrud, L. G. (1986). “The Crystal Structure and Magnetic Susceptibility of R7Co6Sn23 Compounds (R=Y, Tb, Dy, Ho, Er),” Ukr. Fiz. Zh. UFZHFY 31, 15371541.Google Scholar
Skolozdra, R. V., Gschneidner, K. A., and Eyring, L., editors (1997). Handbook on the Physics and Chemistry of Rare Earths (North–Holland Pub. Co., Amsterdam), Vol. 24, p. 399.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: A Criterion for Rating Powder Diffraction Patterns and Evaluating the Reliability of Powder-Pattern Indexing,” J. Appl. Crystallogr. JACGAR 10.1107/S002188987901178X 12, 6065.Google Scholar
Thomas, E. L., Lee, H., Bankston, A. N., MaQuilon, S., Klavins, P., Moldovan, M., Young, D. P., Fisk, Z., and Chan, J. Y. (2006). “Crystal Growth, Transport, and Magnetic Properties of Ln 3Co4Sn13 (L n=La, Ce) With a Perovskite-like Structure,” J. Solid State Chem. JSSCBI 10.1016/j.jssc.2006.02.024 179, 16421649.Google Scholar
Young, R. A., Larson, A. C., and Paiva-Santos, C. O. (2000). User’s Guide to Program DBWS-9807a for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns With a PC and Various Other Computers, School of Physics, Georgia Institute of Technology, Atlanta, Georgia.Google Scholar