Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T09:44:52.489Z Has data issue: false hasContentIssue false

Crystal structures of tricalcium citrates

Published online by Cambridge University Press:  29 June 2018

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616 North Central College, 131 S. Loomis St., Naperville, Illinois 60540
*
a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

Abstract

The crystal structures of calcium citrate hexahydrate, calcium citrate tetrahydrate, and anhydrous calcium citrate have been solved using laboratory and synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Both the hexahydrate and tetrahydrate structures are characterized by layers of edge-sharing Ca coordination polyhedra, including triply chelated Ca. An additional isolated Ca is coordinated by water molecules, and two uncoordinated water molecules occur in the hexahydrate structure. The previously reported polymorph of the tetrahydrate contains the same layers, but only two H2O coordinated to the isolated Ca and two uncoordinated water molecules. Anhydrous calcium citrate has a three-dimensional network structure of Ca coordination polyhedra. The new polymorph of calcium citrate tetrahydrate is the major crystalline phase in several commercial calcium supplements.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.Google Scholar
Bannister, F. A. (1936). “Report on some crystalline components of the Weddell Sea deposits,” Discov. Rep. 13, 6069.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Catti, M., Dovesi, R., Pavese, A., and Saunders, V. R. (1991). “Elastic constants and electronic structure of fluorite (CaF2): an ab initio Hartree-Fock study,” J. Phys. Condens. Matter 3, 41514164.Google Scholar
Dassault Systèmes (2014). Materials Studio 8.0 (BIOVIA, San Diego, CA).Google Scholar
Donnay, J. D. H., and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Amer. Mineral. 22, 446467.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.Google Scholar
Favre-Nicolin, V., and Černý, R. (2002). “FOX, free objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: the Powder Diffraction File™,” Powder Diffr. 32, 6371.CrossRefGoogle Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27(6), 892900.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals - the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge structural database,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.Google Scholar
Herdtweck, E., Kornprobst, T., Sieber, R., Straver, L., and Plank, J. (2011). “Crystal structure, synthesis, and properties of tri-calcium di-citrate tetra-hydrate [Ca3(C6H5O7)2(H2O)2]⋅2H2O,” Z. Anorg. Allg. Chem. 637, 655659.CrossRefGoogle Scholar
Kresse, G., and and Furthmüller, J. (1996). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.Google Scholar
Larson, A. C., and Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS) (Los Alamos National Laboratory Report LAUR 86-784), Los Alamos, New Mexico.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synch. Rad. 15(5), 427432.Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.Google Scholar
Materials Design (2016). MedeA 2.2.0 (Materials Design Inc., Angel Fire NM).Google Scholar
Mazaj, M., Kaucic, V., Golobic, A., and Zabukovec Logar, N. (2012). “A new layered Ca-succinate coordination polymer,” Acta Crystallogr. C68, m4m6.Google Scholar
MDI (2016). Jade 9.7 (Materials Data. Inc., Livermore, CA).Google Scholar
Poganis, E. M., and Shaw, E. H. (1957). “The unit cell dimensions of tricalcium citrate tetrahydrate,” Proc. South Dakota Acad. Sci. 36, 5659.Google Scholar
Rammohan, A., and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts”, Acta Crystallogr. Sect. B: Cryst. Eng. Mater./Acta Crystallogr. Sect. C: Struct. Chem. https://doi.org/10.1107/S2052520618002330.Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. 20(2), 7983.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.CrossRefGoogle Scholar
Tondapu, P., Provost, D., Adams-Huet, B., Sims, T., Chang, C., and Sakhaee, K. (2009). “Comparison of the absorption of calcium carbonate and calcium citrate after roux-en-Y gastric bypass,” Obes. Surg. 19, 12561261.Google Scholar
van de Streek, J., and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Cryst. Sect. B: Struct. Sci., Cryst. Eng. Mater. 70(6), 10201032.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Inst. 79, 085105.Google Scholar
Supplementary material: File

Kaduk supplementary material

Kaduk supplementary material 1

Download Kaduk supplementary material(File)
File 1.2 MB