Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-11T03:17:22.116Z Has data issue: false hasContentIssue false

Crystallisation Kinetics of Metal Organic Frameworks From in situ Time-Resolved X-ray Diffraction

Published online by Cambridge University Press:  14 November 2013

Racha El Osta
Affiliation:
Institut Lavoisier Versailles, Université de Versailles, UMR 8180, 78035 Versailles, France
Mark Feyand
Affiliation:
Institut für Anorganische Chemie, Christian-Albrechts-Universität, Max-Eyth-Straße 2, D-24118 Kiel, Germany
Norbert Stock
Affiliation:
Institut für Anorganische Chemie, Christian-Albrechts-Universität, Max-Eyth-Straße 2, D-24118 Kiel, Germany
Franck Millange*
Affiliation:
Institut Lavoisier Versailles, Université de Versailles, UMR 8180, 78035 Versailles, France
Richard I. Walton*
Affiliation:
Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
*
* Author for correspondence, email: r.i.walton@warwick.ac.uk or franck.millange@uvsq.fr
* Author for correspondence, email: r.i.walton@warwick.ac.uk or franck.millange@uvsq.fr

Abstract

A time-resolved powder diffraction study of the crystallisation of porous metal organic framework materials with the CPO-27 structure ([M2(dhtp)(H2O)2]·8H2O where, dhtp=2,5-dioxoterephthalate) using the energy dispersive X-ray diffraction method is described. Crystallisation under solvothermal conditions is performed between 70 - 110 °C from clear solutions of metal salts (M=Co2+ or Ni2+) and 2,5-dihydroxyterephthalic acid in a mixture of THF-water in sealed reaction vessels, using both conventional and microwave heating. Integration of Bragg peak areas with time provides accurate crystallisation curves, which are modelled using the method of Gualtieri to determine rate constants for nucleation and for growth and then, by Arrhenius analysis, activation energies. Crystallisation is determined to be one-dimensional, consistent with the elongated morphology of the crystals produced in these reactions. With conventional heating the Co-containing CPO-27 crystallises more rapidly than the isostructural Ni-containing analogue and analysis of the kinetic parameters would suggest a complex multi-step crystallisation process. The effect of microwave heating is upon activation energies: the values for both nucleation and for crystal growth are lowered compared to reactions using conventional heating.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahnfeldt, T., Moellmer, J., Guillerm, V., Staudt, R., Serre, C. and Stock, N. (2011). “High-throughput and time-resolved energy-dispersive X-ray diffraction (EDXRD) study of the formation of CAU-1-(OH)2: microwave and conventional heating,” Chem.–Eur. J. 17, 64626468.CrossRefGoogle ScholarPubMed
Allan, P. K., Wheatley, P. S., Aldous, D., Mohideen, M. I., Tang, C., Hriljac, J. A., Megson, I. L., Chapman, K. W., De Weireld, G., Vaesen, S. and Morris, R. E. (2012). “Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide,” Dalton Trans. 41, 40604066.Google Scholar
Barrer, R. M. (1982). Hydrothermal Chemistry of Zeolites (Academic Press, London).Google Scholar
Bloch, E. D., Murray, L. J., Queen, W. L., Chavan, S., Maximoff, S. N., Bigi, J. P., Krishna, R., Peterson, V. K., Grandjean, F., Long, G. J., Smit, B., Bordiga, S., Brown, C. M. and Long, J. R. (2011). “Selective binding of O2 over N2 in a redox-active metal-organic framework with open iron(II) coordination sites,” J. Amer. Chem. Soc. 133, 1481414822.CrossRefGoogle Scholar
Cheetham, A. K. and Mellot, C. F. (1997). “In situ studies of the sol-gel synthesis of materials,” Chem. Mater. 9, 22692279.Google Scholar
Cravillon, J., Schroder, C. A., Bux, H., Rothkirch, A., Caro, J. and Wiebcke, M. (2012). “Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy,” CrystEngComm 14, 492498.CrossRefGoogle Scholar
Croker, D., Loan, M. and Hodnett, B. K. (2009). “Kinetics and mechanisms of the hydrothermal crystallization of calcium titanate species,” Cryst. Growth Des. 9, 22072213.CrossRefGoogle Scholar
Cundy, C. S. and Cox, P. A. (2003). “The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time,” Chem. Rev. 103, 663701.Google Scholar
Czaja, A. U., Trukhan, N. and Müller, U. (2009). “Industrial applications of metal-organic frameworks,” Chem. Soc. Rev. 38, 1284.Google Scholar
Dietzel, P. D. C., Georgiev, P. A., Eckert, J., Blom, R., Strässle, T. and Unruh, T. (2010). “Interaction of hydrogen with accessible metal sites in the metal-organic frameworks M2(dhtp) (CPO-27-M; M=Ni, Co, Mg),” Chem. Commun. (Cambridge, U. K.) 49624964.CrossRefGoogle ScholarPubMed
El Osta, R., Frigoli, M., Marrot, J., Medina, M. E., Walton, R. I. and Millange, F. (2012). “Synthesis, structure, and crystallization study of a layered lithium thiophene-dicarboxylate,” Cryst. Growth Des. 12, 15311537.Google Scholar
Farrusseng, D. (2011). Metal-Organic Frameworks (Wiley-VCH, Weinheim).CrossRefGoogle Scholar
Férey, G. and Serre, C. (2009). “Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences,” Chem. Soc. Rev. 38, 13801399.Google Scholar
Feyand, M., Hübner, A., Rothkirch, A., Wragg, D. S. and Stock, N. (2012). “Copper phosphonatoethanesulfonates: temperature dependent in situ energy dispersive X-ray diffraction study and influence of the pH on the crystal structures,” Inorg. Chem. 51, 1254012547.Google Scholar
Feyand, M., Näther, C., Rothkirch, A. and Stock, N. (2010). “Systematic and in situ energy dispersive X-ray diffraction investigations on the formation of lanthanide phosphonatobutanesulfonates: Ln(O3P-C4H8-SO3)(H2O); (Ln=La-Gd),” Inorg. Chem. 49, 1115811163.CrossRefGoogle Scholar
Francis, R. J. and O'Hare, D. (1998). “The kinetics and mechanisms of the crystallisation of microporous materials,” J. Chem. Soc., Dalton Trans. (1972-1999) (19), 31333148.Google Scholar
Francis, R. J., Price, S. J., Evans, J. S. O., O'Brien, S., O'Hare, D. and Clark, S. M. (1996). “Hydrothermal synthesis of microporous tin sulfides studied by real-time in situ energy-dispersive X-ray diffraction,” Chem. Mater. 8, 2102.CrossRefGoogle Scholar
Glover, T. G., Peterson, G. W., Schindler, B. J., Britt, D. and Yaghi, O. (2011). “MOF-74 building unit has a direct impact on toxic gas adsorption,” Chem. Eng. Sci. 66, 163170.Google Scholar
Gualtieri, A. F. (2001) “Synthesis of sodium zeolites from a natural halloysite,” Phys. Chem. Miner. 28, 719728.Google Scholar
Haque, E. and Jhung, S. H. (2011). “Synthesis of isostructural metal-organic frameworks, CPO-27s, with ultrasound, microwave, and conventional heating: Effect of synthesis methods and metal ions,” Chem. Eng. J. (Amsterdam, Neth.) 173, 866872.Google Scholar
Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Ferey, G., Morris, R. E. and Serre, C. (2012). “Metal-organic frameworks in biomedicine,” Chem. Rev. 112, 12321268.CrossRefGoogle ScholarPubMed
Kepert, C. J. (2010). “Metal-Organic Framework Materials,” in Porous Materials edited by Bruce, D. W., O'Hare, D. and Walton, R. I. (John Wiley and Sons, Chichester), pp. 156.Google Scholar
Kiebach, R., Pienack, N., Bensch, W., Grunwaldt, J. D., Michailovski, A., Baiker, A., Fox, T., Zhou, Y. and Patzke, G. R. (2008). “Hydrothermal formation of W/Mo-Oxides: A multidisciplinary study of growth and shape,” Chem. Mater. 20, 30223033.Google Scholar
Kiebach, R., Pienack, N., Ordolff, M. E., Studt, F. and Bensch, W. (2006). “Combined in situ EDXRD/EXAFS investigation of the crystal growth of [Co(C6H18N4)][Sb2S4] under solvothermal conditions: two different reaction pathways leading to the same product,” Chem. Mater. 18, 11961205.Google Scholar
Long, J. R. and Yaghi, O. M. (2009). “The pervasive chemistry of metal–organic frameworks,” Chem. Soc. Rev. 38, 12131214.CrossRefGoogle ScholarPubMed
MacGillivray, L. R. (2010) Metal-Organic Frameworks Design and Application (John Wiley and Sons, Hoboken).Google Scholar
Millange, F., El Osta, R., Medina, M. E. and Walton, R. I. (2011). “A time-resolved diffraction study of a window of stability in the synthesis of a copper carboxylate metal-organic framework,” CrystEngComm, 13, 103108.CrossRefGoogle Scholar
Millange, F., Medina, M., Guillou, N., Férey, G., Golden, K. M. and Walton, R. I. (2010). “Time-resolved in situ diffraction of the solvothermal crystallisation of some prototypical metal organic frameworks,” Angew. Chem. Int. Ed. 49, 763766.Google Scholar
Modeshia, D. R., Darton, R. J., Ashbrook, S. E. and Walton, R. I. (2009). “Control of polymorphism in NaNbO3 by hydrothermal synthesis,” Chem. Commun. (Cambridge, U. K.) (1), 6870.CrossRefGoogle ScholarPubMed
Munn, J., Barnes, P., Hausermann, D., Axon, S. A. and Klinowski, J. (1992). “In situ studies of the hydrothermal synthesis of zeolites using synchrotron energy-dispersive X-ray-diffraction,” Phase Transitions 39, 129134.Google Scholar
Murray, L. J., Dinca, M. and Long, J. R. (2009). “Hydrogen storage in metal-organic frameworks,” Chem. Soc. Rev. 38, 12941314.Google Scholar
O'Hare, D., Evans, J. S. O., Fogg, A. and O'Brien, S. (2000). “Time-resolved, in situ X-ray diffraction studies of intercalation in lamellar hosts,” Polyhedron 19, 297305.Google Scholar
OriginLabCorp (1991-2010) OriginPro 8.1 SR3 (Computer Software) OriginLabCorp, Northhampton MA.Google Scholar
Pienack, N. and Bensch, W. (2011). “In-situ monitoring of the formation of crystalline solids,” Angew. Chem.-Int. Edit. 50, 20142034.CrossRefGoogle ScholarPubMed
Reinsch, H. and Stock, N. (2012). “Formation and characterization of Mn-MIL-100,” CrystEngComm (3), 544550.Google Scholar
Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B. L., O'Keeffe, M. and Yaghi, O. M. (2005). “Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units,” J. Am. Chem. Soc 127, 15041518.Google Scholar
Rothkirch, A. (2009). f3tool version 0.3b (18.11.2009) (Computer Software), Beamline F3, Hasylab (DESY).Google Scholar
Sankar, G., Okubo, T., Fan, W. and Meneau, F. (2007). “New insights into the formation of microporous materials by in situ scattering techniquesFaraday Discuss. 136, 157166.Google Scholar
Schmidt, C., Feyand, M., Rothkirch, A. and Stock, N. (2012). “High-throughput and in situ EDXRD investigation on the formation of two new metal aminoethylphosphonates - Ca(O3PC2H4NH2) and Ca(OH)(O3PC2H4NH3) 2H2O,” J. Solid State Chem. 188, 4449.CrossRefGoogle Scholar
Schmidt, C. and Stock, N. (2012). “Systematic investigation of zinc aminoalkylphosphonates: influence of the alkyl chain lengths on the structure formation,” Inorg. Chem. 51, 31083118.Google Scholar
Shoaee, M., Agger, J. R., Anderson, M. W. and Attfield, M. P. (2008). “Crystal form, defects and growth of the metal organic framework HKUST-1 revealed by atomic force microscopy,” CrystEngComm 10, 646648.Google Scholar
Stavitski, E., Goesten, M., Juan-Alcaniz, J., Martinez-Joaristi, A., Serra-Crespo, P., Petukhov, A. V., Gascon, J. and Kapteijn, F. (2011). “Kinetic control of metal-organic framework crystallization investigated by time-resolved in situ X-ray scattering,” Angew. Chem., Int. Ed. 50, 96249628.CrossRefGoogle ScholarPubMed
Stock, N. and Biswas, S. (2012). “Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites,” Chem. Rev. 112, 933969.Google Scholar
Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H. and Long, J. R. (2012). “Carbon dioxide capture in metal-organic frameworks,” Chem. Rev. 112, 724781.Google Scholar
Walton, R. I., Francis, R. J., Halasyamani, P. S., O' Hare, D., Smith, R. I., Done, R. and Humphreys, R. J. (1999a). “Novel apparatus for the in situ study of hydrothermal crystallizations using time-resolved neutron diffraction,” Rev. Sci. Instrum. 70, 33913396.Google Scholar
Walton, R. I., Loiseau, T., O'Hare, D. and Férey, G. (1999b). “An in situ energy-dispersive X-ray diffraction study of the crystallisation of open-framework gallium oxyfluorophosphates with the ULM-3 and ULM-4 structure,” Chem. Mater. 11, 32013209.Google Scholar
Walton, R. I., Millange, F., O'Hare, D., Davies, A. T., Sankar, G. and Catlow, C. R. A. (2001). “An in situ energy-dispersive X-ray diffraction study of the hydrothermal crystallisation of zeolite A. 1. influence of reaction conditions and transformation into sodalite,” J. Phys. Chem. B. 101, 8390.CrossRefGoogle Scholar
Walton, R. I. and O'Hare, D. (2000). “Watching solids crystallise using in situ powder diffraction,” Chem. Commun. (Cambridge, U. K.) (23), 22832291.CrossRefGoogle Scholar
Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. and Kim, J. (2003). “Reticular synthesis and the design of new materials,” Nature 423, 705714.Google Scholar
Yoon, M., Srirambalaji, R. and Kim, K. (2012). “Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis,” Chem. Rev. 112, 11961231.Google Scholar
Zacher, D., Liu, J. N., Huber, K. and Fischer, R. A. (2009). “Nanocrystals of Cu3(btc)2 (HKUST-1): a combined time-resolved light scattering and scanning electron microscopy study,” Chem. Commun. (Cambridge, U. K.) (9), 10311033.Google Scholar