Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T09:07:47.194Z Has data issue: false hasContentIssue false

Crystallographic study of ternary ordered skutterudite IrGe1.5Se1.5

Published online by Cambridge University Press:  29 February 2012

F. Laufek*
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Praha 5, Czech Republic
J. Návrátil
Affiliation:
Joint Laboratory of Solid State Chemistry of IMC AS ČR, Studentská 84, 532 10 Pardubice, Czech Republic and University of Pardubice, Studentská 84, 532 10 Pardubice, Czech Republic
*
a)Author to whom correspondence should be addressed. Electronic mail: frantisek.laufek@geology.cz

Abstract

The crystal structure of skutterudite-related phase IrGe1.5Se1.5 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data for IrGe1.5Se1.5 are a=12.0890(2) Å, c=14.8796(3) Å, V=1883.23(6) Å3, space group R3 (No. 148), Z=24, and Dc=8.87 g/cm3. Its crystal structure can be derived from the ideal skutterudite structure (CoAs3), where Se and Ge atoms are ordered in layers perpendicular to the [111] direction of the original skutterudite cell. Weak distortions of the anion and cation sublattices were also observed.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bos, J. W. G. and Cava, R. J. (2007). “Synthesis, crystal structure and thermoelectric properties of IrSn1.5Te1.5 based skutterudites,” Solid State Commun. SSCOA4 141, 3841.10.1016/j.ssc.2006.09.035CrossRefGoogle Scholar
Coelho, A. A. and Cheary, R. W. (1997). X-Ray Line Profile Fitting Program, XFIT(Computer Software), School of Physical Sciences, University of Technology, Sydney, New South Wales.Google Scholar
Dutta, S. N. and Jeffrey, G. A. (1965). “On the structure of germanium selenide and related binary IV/VI compounds,” Inorg. Chem. INOCAJ 4, 13631366.10.1021/ic50031a032CrossRefGoogle Scholar
Emsley, J. (1989). The Elements (Oxford University Press, Oxford).Google Scholar
Fjellvag, H., Kongshaug, K. O., and Stolen, S. (2001). “Crystal structure of Ge4Se9: A new germanium selenide with Se2 pairs breaking the edge-sharing GeSe4 tetrahedra in GeSe2,” Dalton Trans. DTARAF 7, 10431045.CrossRefGoogle Scholar
Fleurial, J. P., Caillat, T., and Borshchevsky, A. (1997). “Skutterudites: An update,” Proceedings of the 16th International Conference on Thermoelectrics, Dresden, Germany, pp. 111.Google Scholar
ICDD (2005). “Powder Diffraction File,” edited by McClune, W. F., International Centre for Diffraction Data, Newtown Square, Pennsylvania.Google Scholar
Kjekshus, A. and Rakke, T. (1974). “Compounds with the skutterudite type crystal structure. III. Structural data for arsenides and antimonides,” Acta Chem. Scand., Ser. A ACAPCT 28a, 99103.10.3891/acta.chem.scand.28a-0099CrossRefGoogle Scholar
Laufek, F., Navrátil, J., and Goliáš, V. (2008). “Synthesis and Rietveld refinement of skutterudite-related phase CoSn1.5Te1.5,” Powder Diffr. PODIE2 23, 1519.10.1154/1.2825306CrossRefGoogle Scholar
Laufek, F., Navrátil, J., Plášil, J., Plecháček, T., and Drašar, Č. (2009). “Synthesis, crystal structure and transport properties of skutterudite-related CoSn1.5Se1.5,” J. Alloys Compd. JALCEU 479, 102106.10.1016/j.jallcom.2009.01.067CrossRefGoogle Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull. MRBUAC 23, 447452.10.1016/0025-5408(88)90019-0CrossRefGoogle Scholar
Lyons, A., Gruska, R. P., Case, C., Subbaro, S. N., and Wold, A. (1978). “The preparation and characterization of some skutterudite related compounds,” Mater. Res. Bull. MRBUAC 13, 125128.10.1016/0025-5408(78)90076-4CrossRefGoogle Scholar
Mitchell, R. H. (2002). Perovskites: Modern and Ancient (Almaz, Thunder Bay, Ontario).Google Scholar
Navrátil, J., Plecháček, T., Vlček, M., Beneš, L., and Laufek, F. (2007). “Transport properties of partially filled YbxCo4Ge6Te6 -based skutterudites,” Proceedings of the 5th European Conference on Thermoelectrics, Odessa, Ukraine, pp. 210213.Google Scholar
O’Keeffe, M. and Hyde, B. G. (1977). “Some structures topologically related to cubic perovskite (E21), ReO3(D09) and Cu3Au(L12),” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 33, 38023813.10.1107/S0567740877012114CrossRefGoogle Scholar
Partik, M., Kringe, C., and Lutz, D. H. (1996). “X-ray structure determination of pseudomerohedrally twinned CoGe1.5S1.5 and CoGe1.5Se1.5, absorption correction,” Z. Kristallogr. ZEKRDZ 211, 304312.10.1524/zkri.1996.211.5.304CrossRefGoogle Scholar
Partik, M. and Lutz, H. D. (1999). “Semiempirical band structure calculations on skutterudite-type compounds,” Phys. Chem. Miner. PCMIDU 27, 4146.10.1007/s002690050238CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1990). “FULLPROF: A program for Rietveld refinement and pattern matching analysis,” Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Tolouse, France, p. 127.Google Scholar
Toby, B. (2006). “R factors in Rietveld analysis: How good is good enough?Powder Diffr. PODIE2 21, 6770.10.1154/1.2179804CrossRefGoogle Scholar
Uher, C., (2003). Chemistry, Physics and Materials Science of Thermoelectric Materials: Beyond Bismuth Telluride, edited by Kanatzidis, M. G., Mahanti, S. D., and Hogan, T. P. (Plenum, New York), pp. 121147.CrossRefGoogle Scholar
Vaqueiro, P., Sobany, G. G., Powell, A. V., and Knight, K. S. (2006). “Structure and thermoelectric properties of the ordered skutterudite CoGe1.5Te1.5,” J. Solid State Chem. JSSCBI 179, 20472053.10.1016/j.jssc.2006.04.004CrossRefGoogle Scholar
Vaqueiro, P., Sobany, G. G., and Stindl, M. (2008). “Structure and electrical transport properties of the ordered skutterudites MGe1.5S1.5 (M =Co,Rh,Ir),” J. Solid State Chem. JSSCBI 181, 768776.10.1016/j.jssc.2008.01.025CrossRefGoogle Scholar
Villars, P. (2010). Linus Pauling File (Computer Software), Tsukuba, Japan, 〈https://crystdb.nims.go.jp〉.Google Scholar
Whitfield, P. S., LePage, Y., Grice, J. D., Stanley, C. J., Jones, G. C., Rumsey, M. S., Blake, C., Robers, A. C., Stirling, J. A. R., and Carpenter, G. J. C. (2007). “LiNaSiB3O7(OH)—Novel structure of the new borosilicate mineral jadarite determined from laboratory powder diffraction data,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 63, 396401.10.1107/S0108768107010130CrossRefGoogle ScholarPubMed