Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T08:39:05.207Z Has data issue: false hasContentIssue false

Getting the hot structures

Published online by Cambridge University Press:  01 March 2012

K. F. Kelton
Affiliation:
Department of Physics, Washington University, St. Louis, Missouri 63130
A. K. Gangopadhyay
Affiliation:
Department of Physics, Washington University, St. Louis, Missouri 63130

Abstract

The recent advances in levitation methods for materials processing now enable structural, thermo-physical property, and phase transition studies to be made on high temperature solids and liquids without container contamination. These studies have led to new insights into the liquid state and have revealed how local order in the liquid can dictate phase formation. In this article, levitation techniques are briefly discussed, focusing most on electrostatic levitation. Recent synchrotron studies of electrostatically levitated undercooled Ti–Zr–Ni liquids are presented, which demonstrate that developing icosahedral short-range order in the liquid causes the nucleation of a metastable icosahedral quasicrystal instead of the stable tetrahedral Laves phase. In addition to providing the first experimental proof of a half-century-old hypothesis linking the order of the liquid with the nucleation barrier, these data raise new questions about the general applicability of the thermodynamic model assumed in the classical theory of nucleation. The combination of electrostatic levitation and synchrotron high-energy x-ray diffraction also allows rapid and accurate determinations of phase diagrams for high temperature materials. This is demonstrated usingTi–Fe–Si–O as a case study. This new technique, then, is of practical as well as basic importance.

Type
Read Hot X-Rays
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Busch, R., Kim, Y. J., Johnson, W. L., Rulison, A. J., Rhim, W. K., and Isheim, D. (1995). Appl. Phys. Lett. APPLAB 10.1063/1.113619 66, 3111.CrossRefGoogle Scholar
Croat, T. K., Davis, J. P., Gangopadhyay, A. K., Kelton, K. F., Lee, G. W., Simmons, J., Hyers, R. W., Robinson, M. B., Rogers, J., Savage, L., and Rathz, T. J. (2001). Mater. Res. Soc. Symp. Proc. MRSPDH , 463, K1.3.1–6.Google Scholar
Day, C. (2003). Phys. Today PHTOAD 56, 24.Google Scholar
Fahrenheit, D. B. (1724). Philos. Trans. R. Soc. London PTRSAV 33, 78.Google Scholar
Frank, F. C. (1952). Proc. R. Soc. London, Ser. A PRLAAZ 215, 43.Google Scholar
Herlach, D. M., Cochrane, R. F., Egry, I., Fecht, H. J., and Greer, A. L. (1993). Int. Mater. Rev. INMREO 38, 273.Google Scholar
Hofmeister, W. H., Robinson, M. B., and Bayuzick, R. J. (1986). Appl. Phys. Lett. APPLAB 10.1063/1.97372 49, 1342.CrossRefGoogle Scholar
Holland-Moritz, D. (1998). Int. J. Non-Equilib. Process. IJNPFU 11, 169.Google Scholar
Holland-Moritz, D., Schenk, T., Simonet, V., Bellissent, R., Convert, P., and Hansen, T. (2002). J. Alloys Compd. JALCEU 342, 77.CrossRefGoogle Scholar
Holzer, J. C. and Kelton, K. F. (1991). Acta Metall. Mater. AMATEB 10.1016/0956-7151(91)90152-Q 39, 1833.CrossRefGoogle Scholar
Kelton, K. F. (1991). Solid State Physics, edited by Ehrenreich, H., and Turnbull, D. (Academic, Boston), Vol. 45, p. 75.Google Scholar
Kelton, K. F., Gangopadhyay, A. K., Lee, G.-W., Hannet, L., Hyers, R. W., Krishnan, S., Robinson, M. B., Rogers, J., and Rathz, T. (2002). J. Non-Cryst. Solids JNCSBJ 312–314, 305.Google Scholar
Kelton, K. F., Lee, G.-W., Gangopadhyay, A. K., Hyers, R. W., Rathz, T., Rogers, J., Robinson, M. B., and Robinson, D. (2003). Phys. Rev. Lett. PRLTAO 10.1103/PhysRevLett.90.195504 90, 195504.CrossRefGoogle Scholar
Lee, G.-W., Gangopadhyay, A. K., Kelton, K. F., Hyers, R. W., Rathz, T. J., Rogers, J. R., and Robinson, D. (2004). Phys. Rev. Lett. PRLTAO 93, 037802.CrossRefGoogle Scholar
Lee, G.-W., Gangopadhyay, A. K., Kelton, K. F., Hyers, R. W., Rathz, T. J., Rogers, J. R., and Robinson, D. (2004). (private communication).Google Scholar
Libbert, J. L. and Kelton, K. F. (1995). Philos. Mag. Lett. PMLEEG 71, 153.CrossRefGoogle Scholar
Libbert, J. L., Kelton, K. F., Goldman, A. I., and Yellon, W. (1994). Phys. Rev. B PRBMDO 10.1103/PhysRevB.49.11675 49, 11675.Google Scholar
Rathz, T. J., Robinson, M. B., Hofmeister, W. H., and Bayuzick, R. J. (1991). Rev. Sci. Instrum. RSINAK 61, 3846.CrossRefGoogle Scholar
Rhim, W.-K., Chung, S. K., Barber, D., Man, K. F., Gutt, G., Rulison, A. J., and Spjut, R. E. (1993). Rev. Sci. Instrum. RSINAK 10.1063/1.1144475 64, 2961.Google Scholar
Rhim, W.-K., Collender, M., Hyson, M. T., Simms, W. T., and Elleman, D. D. (1985). Rev. Sci. Instrum. RSINAK 10.1063/1.1144475 56, 307.Google Scholar
Rhim, W.-K. and Ohsaka, K. (2000). J. Cryst. Growth JCRGAE 10.1016/S0022-0248(99)00437-6 208, 313.Google Scholar
Rulison, A. J., Watkins, J. L., and Zambrano, B. (1997). Rev. Sci. Instrum. RSINAK 10.1063/1.1148208 68, 2856.CrossRefGoogle Scholar
Schenk, T., Holland-Moritz, D., Simonet, V., Bellissent, R., and Herlach, D. M. (2002). Phys. Rev. Lett. PRLTAO 10.1103/PhysRevLett.89.075507 89, 075507.CrossRefGoogle Scholar
Steinhardt, P. J., Nelson, D. R., and Ronchetti, M. (1981). Phys. Rev. Lett. PRLTAO 10.1103/PhysRevLett.47.1297 47, 1297.Google Scholar
Steinhardt, P. J., Nelson, D. R., and Ronchetti, M. (1983). Phys. Rev. B PRBMDO 10.1103/PhysRevB.28.784 28, 784.Google Scholar
Trinh, E. H. and Ohsaka, K. (1995). Int. J. Thermophys. IJTHDY 10.1007/BF01441920 16, 545.Google Scholar
Turnbull, D. (1949). J. Appl. Phys. JAPIAU 20, 817.Google Scholar
Turnbull, D. (1950a). J. Chem. Phys. JCPSA6 18, 768.CrossRefGoogle Scholar
Turnbull, D. (1950b). Trans. AIME TAIMAF 188, 1144.Google Scholar
Turnbull, D. (1952). J. Chem. Phys. JCPSA6 10.1063/1.1700435 20, 411.Google Scholar
Vinet, B., Cortella, L., and Favier, J. J. (1991). Appl. Phys. Lett. APPLAB 10.1063/1.104403 58, 97.CrossRefGoogle Scholar
Vinet, B., Idelon, J. C., Wales, B., and Bost, J. (1990). Vide, Couches Minces VCMIDS 252, 73.Google Scholar
Vonnegut, B. (1948). J. Colloid Sci. JCSCA7 10.1016/S0095-8522(48)90049-X 3, 563.Google Scholar
Weber, J. K. R., Hampton, D. S., Merkley, D. R., Rey, C. A., Zatarski, M. M., and Nordine, P. C. (1994). Rev. Sci. Instrum. RSINAK 10.1063/1.1145157 65, 456.Google Scholar
Yonezawa, F. (1991). Solid State Physics, edited by Ehrenreich, H., and Turnbull, D. (Academic, Boston), Vol. 45, p. 179.Google Scholar