Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T00:36:31.317Z Has data issue: false hasContentIssue false

High pressure deformation study of zirconium

Published online by Cambridge University Press:  01 March 2012

Sven C. Vogel
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Helmut Reiche
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Donald W. Brown
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract

In situ deformation studies of polycrystalline materials using diffraction are an established method to understand elastic and plastic deformation of materials. Studies of active deformation mechanisms, the interplay of deformation with texture, and ultimately the development of predictive capabilities for deformation modeling are an active field of research. Parameters studied by diffraction are typically lattice strains and texture evolution, which coupled with the macroscopic flow curve allow for improved understanding of the micro-mechanics of deformation. We performed a study of the uniaxial deformation of Zircaloy-2 at 2 GPa at the 13-BM-D beamline at the Advanced Photon Source. The deformation-DIA apparatus generates a confining hydrostatic pressure using a cubic anvil setup. Two differential rams allow an increase (compressive load) or decrease (tensile load) of the uniaxial straining in the vertical direction, allowing studies of plastic deformation at high pressures. In this paper, we describe how macroscopic strains, hydrostatic pressure, and uniaxial strains are derived and present some brief results.

Type
X-RAY DIFFRACTION AND RELATED TECHNIQUES
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnew, S. R., Tomé, C. N., Brown, D. W., Holden, T. M., and Vogel, S. C. (2003). “Study of Slip Mechanisms in a Magnesium Alloy by Neutron Diffraction and Modeling,” Scr. Mater.SCMAF710.1016/S1359-6462(02)00591-2 48, 10031008.CrossRefGoogle Scholar
Brown, D. W., Abeln, S. P., Blumenthal, W. R., Bourke, M. A. M., Mataya, M. C., and Tomé, C. N. (2005a). “Development of Crystallographic Texture During High Rate Deformation of Rolled and Hot-Pressed Beryllium,” Metall. Mater. Trans. AMMTAEB 36, 929939.CrossRefGoogle Scholar
Brown, D. W., Agnew, S. R., Bourke, M. A. M., Holden, T. M., Vogel, S. C., and Tomé, C. N. (2005b). “Internal Strain and Texture Evolution During Deformation Twinning in Magnesium,” Mater. Sci. Eng., AMSAPE3 399, 112.CrossRefGoogle Scholar
Clausen, B., Lorentzen, T., and Leffers, T. (1998). “Self-Consistent Modelling of the Plastic Deformation of f.c.c. Polycrystals and its Implications for Diffraction Measurements of Internal Stresses,” Acta Mater.ACMAFD10.1016/S1359-6454(98)00014-7 46, 30873098.CrossRefGoogle Scholar
Hammersley, A. P. (1998). Fit2D V9.129 Reference Manual V3.1 (ESRF Internal Report ESRF98HA01T), Grenoble, France: European Synchrotron Radiation Facility.Google Scholar
Hammersley, A. P., Svensson, S. O., and Thompson, A. (1994). “Calibration and Correction of Spatial Distortions in 2D Detector Systems,” Nucl. Instrum. Methods Phys. Res. ANIMAER10.1016/0168-9002(94)90720-X 346, 312321.CrossRefGoogle Scholar
Kaschner, G. C., Tomé, C. N., Beyerlein, I. J., Vogel, S. C., Brown, D. W., and McCabe, R. J. (2006). “Role of Twinning in the Hardening Response of Zirconium During Temperature Reloads,” Acta Mater.ACMAFD 54, 28872896.CrossRefGoogle Scholar
Kocks, U. F., Tomé, C. N., and Wenk, H.-R. (1998). Texture and Anisotropy (Cambridge University Press, New York).Google Scholar
Larson, A. C. and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS) (Report LAUR 86-748), Los Alamos, New Mexico: Los Alamos National Laboratory.Google Scholar
Nishiyama, N., Wang, Y., Uchida, T., Irifune, T., Rivers, M. L., and Sutton, S. R. (2005). “Pressure and Strain Dependence of the Strength of Sintered Polycrystalline Mg2SiO4 Ringwoodite,” Geophys. Res. Lett.GPRLAJ10.1029/2004GL022141 32, L04307.CrossRefGoogle Scholar
Rubie, D. C., Couvy, H., Frost, D., Durham, W., Wang, Y., and Cordier, P. (2004). “Using the D-DIA to Study Changes in Deformation Mechanism in Forsterite at High Pressure (Abstracts of the Tenth International Symposium on Experimental Mineralogy, Petrology and Geochemistry),” LithosLITHAN 73, S93.Google Scholar
Singh, A. K. and Balasingh, C. (1994). “The Lattice Strains in a Specimen (Hexagonal System) Compressed Nonhydrostatically in an Opposed Anvil High Pressure Setup,” J. Appl. Phys.JAPIAU10.1063/1.355786 75, 49564962.CrossRefGoogle Scholar
Uchida, T., Wang, Y., Rivers, M. L., and Sutton, S. R. (2004). “Yield Strength and Strain Hardening of MgO up to 8 GPa measured in the Deformation-DIA with Monochromatic X-ray Diffraction,” Earth Planet. Sci. Lett.EPSLA210.1016/j.epsl.2004.07.023 226, 117126.CrossRefGoogle Scholar
Vogel, S. C. (2001). “High-Pressure and Texture Measurements with an Imaging Plate,” Diplomarbeit am Institut für Geowissenschaften – Mineralogie, Christian Albrechts Universität, Kiel, Germany.Google Scholar
Vogel, S. C. and Knorr, K. (2005). “Two2One—Software for the Analysis of Two-Dimensional Diffraction Data,” Commission on Powder Diffraction (CPD) of the International Union for Crystallography (IUCr) Newsletter 32, 2325.Google Scholar
Vogel, S. C., Ehm, L., Knorr, K., and Braun, G. (2002). “Automated Processing of 2D Powder Diffraction Data,” Adv. X-Ray Anal.AXRAAA 45, 3133.Google Scholar
Wang, Y., Durham, W. B., Getting, I. C., and Weidner, D. J. (2003). “The Deformation-DIA: A New Apparatus for High Temperature Triaxial Deformation to Pressures up to 15 GPa,” Rev. Sci. Instrum.RSINAK10.1063/1.1570948 74, 30023011.CrossRefGoogle Scholar
Wenk, H.-R., Ischia, G., Nishiyama, N., Wang, Y., and Uchida, T. (2005). “Texture Development and Deformation Mechanisms in Ringwoodite,” Phys. Earth Planet. Inter.PEPIAM 152, 191199.CrossRefGoogle Scholar
Yablinsky, C. A., Cerreta, E. K., Gray, G. T., Brown, D. W., and Vogel, S. C. (2006). “The Effect of Twinning on the Work-Hardening Behavior and Microstructural Evolution of Hafnium,” Metall. Mater. Trans. AMMTAEB 37, 19071915.CrossRefGoogle Scholar
Zhao, Y., Zhang, J., Pantea, C., Qian, J., Daemen, L. L., Rigg, P. A., Hixson, R. S., Gray, G. T. III, Yang, Y., Wang, L., Wang, Y., and Uchida, T. (2005). “Thermal Equations of State of the α, β, and ω Phases of Zirconium,” Phys. Rev. BPRBMDO10.1103/PhysRevB.71.184119 71, 184119.CrossRefGoogle Scholar