Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T08:45:11.622Z Has data issue: false hasContentIssue false

Medical applications of X-ray fluorescence for trace element research

Published online by Cambridge University Press:  01 March 2012

Jimmy Börjesson
Affiliation:
Department of Diagnostic Radiology, County Hospital, SE-301 85 Halmstad, Sweden
Sören Mattsson
Affiliation:
Department of Radiation Physics, Lund University, Malmö University Hospital, SE-205 02 Malmö, Sweden

Abstract

Techniques for estimation of element levels directly in humans (noninvasive in vivo) or in samples (in vitro) from humans are reviewed. Toxic, nonessential, trace elements may cause temporary or permanent damage to various organs and tissues in humans. There is thus a need to control the concentrations. Knowledge of the relations between toxic effects and element concentration may be extracted from measurements in humans as well as in samples from humans and her environment. Applications traditionally include occupationally exposed subjects, but an increasing research area is studies of members of the general population and of patients undergoing therapy for malignant and other diseases. Most in vivo XRF studies deal with lead in bone and cadmium in kidneys. For retired lead workers, a clear association has been demonstrated between bone lead and blood lead, due to endogenous lead excretion from the skeleton. A study of mercury in vivo showed that the technique is capable of detecting mercury in heavily exposed worker’s kidneys. In vivo XRF in cancer and rheumatology patients has helped to understand how platinum and gold are retained in the human body. The newest in vivo applications include zinc in prostate gland and arsenic in skin.

Type
X-Ray Fluorescence
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlgren, L., Lidén, K., Mattsson, S., and Tejning, S. (1976). “X-ray fluorescence analysis of lead in human skeleton in vivo,” Scand. J. Work Environ. HealthSWEHDO 2, 8286.CrossRefGoogle ScholarPubMed
Al-Ghorabie, F. H. H. (2000). “Evaluation of 133Xe for X-ray fluorescence analysis of cadmium in vivo: a Monte Carlo study,” Radiat. Environ. Biophys.REBPAT 39, 141145.CrossRefGoogle ScholarPubMed
Anderson, D. L. and Cunningham, W. C. (1996). “Nondestructive determination of lead, cadmium, tin, antimony, and barium in ceramic glazes by radioisotope X-ray fluorescence spectrometry,” J. AOAC Int.JAINEE 79, 11411157.CrossRefGoogle ScholarPubMed
Ao, Q., Lee, S. H., and Gardner, R. P. (1997). “Development of the specific purpose Monte Carlo code CEARXRF for the design and use of in vivo X-ray fluorescence analysis systems for lead in bone,” Appl. Radiat. Isot.ARISEF10.1016/S0969-8043(97)00136-X 48, 14031412.CrossRefGoogle ScholarPubMed
Bajanowski, T., Brinkmann, B., Stefanec, A. M., Barckhaus, R. H., and Fechner, G. (1998). “Detection and analysis of tracers in experimental drowning,” Int. J. Legal Med.ZZZZZZ 111, 5761.CrossRefGoogle ScholarPubMed
Börjesson, J. (1996). “Studies of cadmium, mercury and lead in man. The value of X-ray fluorescence measurements in vivo,” Ph.D. thesis, Department of Radiation Physics, Lund University, Malmö, Sweden.Google Scholar
Börjesson, J. and Mattsson, S. (2004). “X-ray fluorescence analysis in medical sciences” in X-Ray Spectrometry: Recent Technological Advances, edited by Tsuji, K., Injuk, J., and Grieken, R. Van (Wiley, Chichister, United Kingdom), pp. 487516.CrossRefGoogle Scholar
Börjesson, J., Alpsten, M., Huang, S., Jonson, R., Mattsson, S., and Thornberg, C. (1993). “In vivo X-ray fluorescence analysis with applications to platinum, gold and mercury in man—experiments, improvements and patient measurements” in Human Body Composition. In vivo Methods, Models, and Assessment, edited by Ellis, K. J. and Eastman, J. D. (Plenum, New York), pp. 275280.CrossRefGoogle Scholar
Börjesson, J., Barregård, L., Sällsten, G., Schütz, A., Jonson, R., Alpsten, M., and Mattsson, S. (1995). “In vivo XRF analysis of mercury: the relation between concentrations in the kidney and the urine,” Phys. Med. Biol.PHMBA710.1088/0031-9155/40/3/006 40, 413426.CrossRefGoogle ScholarPubMed
Börjesson, J., Bellander, T., Järup, L., Elinder, C. G., and Mattsson, S. (1997). “In vivo analysis of cadmium in battery workers versus measurements of blood, urine, and workplace air,” Occup. Environ. Med.OEMEEM 54, 424431.CrossRefGoogle ScholarPubMed
Bradley, D. A. and Farquharson, M. J. (1999). “XRF and the in vivo evaluation of toxicological metals,” X-Ray Spectrom.XRSPAX 28, 270274.3.0.CO;2-U>CrossRefGoogle Scholar
Chettle, D. R. (1999). “X-ray fluorescence and neutron activation for measuring trace elements in vivo,” 4th Topical Meeting on Industrial Radiation and Radioisotope Measurement Applications (IRRMA), Raleigh, NC, October 1999.Google Scholar
Christoffersson, J.-O. and Mattsson, S. (1983). “Polarised X-rays in XRF-analysis for improved in vivo detectability of cadmium in man,” Phys. Med. Biol.PHMBA710.1088/0031-9155/28/10/005 28, 11351144.CrossRefGoogle ScholarPubMed
Farquharson, M. J. and Bradley, D. A. (1999). “The feasibility of a sensitive low-dose method for the in vivo evaluation of Fe in skin using K-shell X-ray fluorescence (XRF),” Phys. Med. Biol.PHMBA7 44, 955965.CrossRefGoogle ScholarPubMed
Feldstein, H., Cohen, Y., Shenberg, C., Klein, A., Kojller, M., Maenhaut, W., Cafmeyer, J., and Cornelis, R. (1998). “Comparison between levels of trace elements in normal and cancer inoculated mice by XRF and PIXE,” Biol. Trace Elem. Res.BTERDG 61, 169180.CrossRefGoogle ScholarPubMed
Forsell, M., Larsson, B., Ljungqvist, A., Carlmark, B., and Johansson, O. (1998). “Mercury content in amalgam tattoos of humanoral mucosa and its relation to local tissue reactions,” Eur. J. Oral Sci.ZZZZZZ 106, 582587.CrossRefGoogle Scholar
Gardner, R. P., Lee, S. H., and Todd, A. C. (1999). “Error analysis and design of the XRF measurement of in vivo lead in the tibia with the Monte Carlo code CEARXRF” in Proceedings of the European Conference on Energy Dispersive X-ray Spectrometry EDXRS-98, edited by Fernandez, J. E. and Tartari, A. (Editrice Compositori, Bologna), pp. 203216.Google Scholar
Gordon, C. L., Chettle, D. R., and Webber, C. E. (1993). “An upgraded 109Cd K X-ray fluorescence bone Pb measurement” in Human Body Composition. In vivo Methods, Models, and Assessment, edited by Ellis, K. J. and Eastman, J. D. (Plenum, New York), pp. 285288.CrossRefGoogle Scholar
Hansson, M., Berg, G., Larsson, A., Nyström, E., and Isaksson, M. (2004). “X-ray fluorescence analysis for determination of iodine concentration in the thyroid: A methodological study,” Int. J. Body Compos. Res. 2, 155163.Google Scholar
Hoffer, P. B., Jones, W. B., Crawford, R. B., Beck, R., and Gottschalk, A. (1968). “X-ray fluorescent thyroid scanning: A new method of imaging the thyroid,” RadiologyRADLAX 90, 342344.CrossRefGoogle Scholar
Hugtenburg, R. P., Turner, J. R., Mannering, D. M., and Robinson, B. A. (1998). “Monte Carlo methods for the in vivo analysis of Cisplatin using X-ray fluorescence,” Appl. Radiat. Isot.ARISEF 49, 673676.CrossRefGoogle ScholarPubMed
Jacobs, R., and Palmer, P. T. (2006). “Applications of EDXRF to rapid screening for toxic elements in foods and Asian patent medicines,” The 55th Annual Denver X-ray Conference, Denver, CO, August 2006.Google Scholar
Jonson, R., Mattsson, S., and Unsgaard, B. (1985). “In vivo determination of platinum concentration of cisplatin therapy of testicular carcinoma,” in Recent Advances in Chemotherapy, edited by Ishigami, J. (Univ. of Tokyo, Tokyo), pp. 12221224.Google Scholar
Keenleyside, A., Song, X., Chettle, D. R., and Webber, C. E. (1996). “The lead content of human bones from the 1845 Franklin expedition,” J. Archaeol. Sci.JASCDU 23, 461465.CrossRefGoogle Scholar
Kilic, A. (1995). “A theoretical and experimental investigation of polarized X-rays for the in vivo measurements of heavy metals,” Ph.D. thesis, University of Wales, Swansea, United Kingdom.Google Scholar
Liljensten, E. L., Attaelmanan, A. G., Larsson, C., Ljusberg-Wahren, H., Danielsen, N., Hirsch, J.-M., and Thomsen, P. (2000). “Hydroxyapatite granule∕carrier composites promote new bone formation in cortical defects,” Clin. Implant Dent. Relat. Res. 2, 5059.CrossRefGoogle ScholarPubMed
MacPherson, A., and Bacsó, J. (2000). “Relationship of hair calcium concentration to incidence of coronary heart disease,” Sci. Total Environ.STENDL 255, 1119.CrossRefGoogle ScholarPubMed
Mattsson, H. and Börjesson, J. (1994). “A method for in vivo determination of gold in finger joints of patients with rheumatoid arthritis,” Department of Radiation Physics, University of Göteborg, Sweden. Report GURADFYS.Google Scholar
McNeill, F. E., and O’Meara, J. M. (1999). “The in vivo measurement of trace heavy metals by K X-ray fluorescence,” Adv. X-Ray Anal.AXRAAA 41, 910921.Google Scholar
McNeill, F. E., Stokes, L., Brito, J. A., Chettle, D. R., and Kaye, W. E. (2000). “109Cd X ray fluorescence measurements of tibial lead content in young adults exposed to lead in early childhood,” Occup. Environ. Med.OEMEEM10.1136/oem.57.7.465 57, 465471.CrossRefGoogle ScholarPubMed
McNeill, F. E., Chettle, D. R., Nie, L., Popovic, M., Studinski, R. C. N., and O’Meara, J. M. (2006). “In vivo measurement of toxic elements using X-ray fluorescence analysis,” The 55th Annual Denver X-ray Conference, Denver, CO, August 2006.Google Scholar
Milakovic, M., Berg, G., Eggertsen, R., Nystrom, E., Olsson, A., Larsson, A., and Hansson, M. (2006). “Determination of intrathyroidal iodine by X-ray fluorescence analysis in 60- to 65-year olds living in an iodine-sufficient area,” J. Intern Med.ZZZZZZ 260, 6975.CrossRefGoogle Scholar
Muramatsu, Y., Ishikawa, Y., Yoshida, S., and Mori, T. (1999). “Determination of thorium in organs from thorotrast patients by inductively coupled plasma mass spectroscopy and X-ray fluorescence,” Radiat. Res.RAREAE 152, S97S101.CrossRefGoogle ScholarPubMed
Nie, H., Chettle, D. R., Luo, L., and O’Meara, J. M. (2006). “In vivo investigation of a new 109Cd γ-ray induced K-XRF bone lead measurement system,” Phys. Med. Biol.PHMBA710.1088/0031-9155/51/2/011 51, 351360.CrossRefGoogle ScholarPubMed
O’Meara, J. M., Chettle, D. R., McNeill, F. E., and Webber, C. E. (1997). “The feasibility of measuring bone uranium concentrations in vivo using source excited K X-ray fluorescence,” Phys. Med. Biol.PHMBA710.1088/0031-9155/42/6/008 42, 11091120.CrossRefGoogle ScholarPubMed
Palmer, P. T., Yamamoto, K., Webber, S., Ferguson, K., and Jacobs, R. (2006). “Evaluation of analytical figures of merit for rapid screening of toxic elements in food via EDXRF,” The 55th Annual Denver X-ray Conference, Denver, CO, August 2006.Google Scholar
Rosen, J. F. (1997). “Clinical applications of L-line X-ray fluorescence to estimate bone lead values in lead-poisoned young children and in children, teenagers, and adults from lead-exposed and non-lead-exposed suburban communities in the United States,” Toxicol. Ind. HealthZZZZZZ 13, 211218.CrossRefGoogle ScholarPubMed
Schütz, A., Olsson, M., Jensen, A., Gerhardsson, L., Börjesson, J., Mattsson, S., and Skerfving, S. (2005). “Lead in finger bone, whole blood, plasma and urine in lead-smelter workers: extended exposure range,” Int. Arch. Occup. Environ. HealthZZZZZZ 78, 3543.CrossRefGoogle ScholarPubMed
Shakeshaft, J. and Lillicrap, S. (1993). “Technical note: an X-ray fluorescence system for the determination of gold in vivo following chrysotherapy,” Br. J. Radiol.BJRAAP 66, 714717.CrossRefGoogle ScholarPubMed
Shenberg, C., Boazi, M., Cohen, J., Klein, A., Kojler, M., and Nyska, A. (1994). “An XRF study of trace elements accumulation in kidneys of tumor-bearing mice after treatment with cis-DDP with and without selenite and selenocistamine,” Biol. Trace Elem. Res.BTERDG 40, 137149.CrossRefGoogle ScholarPubMed
Shilstein, S. Sh., Breskin, A., Chechik, R., Feldman, G., and Vartsky, D. (2004). “In vivo determination of prostatic zinc: phantom feasibility study,” Phys. Med. Biol.PHMBA710.1088/0031-9155/49/4/001 49, 485499.CrossRefGoogle ScholarPubMed
Singh, J., Pritchard, D. E., Carlisle, D. L., Mclean, J. A., Montaser, A., Orenstein, J. M., and Patierno, S. R. (1999). “Internalization of carcinogenic lead chromate particles by cultured normal human lung epithelial cells: formation of intracellular lead-inclusion bodies and induction of apoptosis,” Toxicol. Appl. Pharmacol.TXAPA9 161, 240248.CrossRefGoogle ScholarPubMed
Somervaille, L. J., Chettle, D. R., and Scott, M. C. (1985). “In vivo measurement of lead in bone using X-ray fluorescence,” Phys. Med. Biol.PHMBA710.1088/0031-9155/30/9/005 30, 929943.CrossRefGoogle ScholarPubMed
Studinski, R. C., McNeill, F. E., Chettle, D. R., and O’Meara, J. M. (2005). “Estimation of a method detection limit for an in vivo XRF arsenic detection system,” Phys. Med. Biol.PHMBA710.1088/0031-9155/50/3/009 50, 521530.CrossRefGoogle Scholar
Sures, B., Zimmermann, S., Messerschmidt, J., von Bohlen, A., and Alt, F. (2001). “First report on the uptake of automobile catalyst emitted palladium by European eels (Anguilla anguilla) following experimental exposure to road dust,” Environ. Pollut.ENPOEK 113, 341345.CrossRefGoogle ScholarPubMed
Suzuki, H. (1998). “Nickel and gold in skin lesions of pierced earlobes with contact dermatitis. A study using scanning electron microscopy and X-ray microanalysis,” Arch. Dermatol. Res.ZZZZZZ 290, 523527.CrossRefGoogle ScholarPubMed
Suzuki, N. (1995). “Metal allergy in dentistry: detection of allergen metals with X-ray fluorescence spectroscope and its application toward allergen elimination,” Int. J. ProsthodontZZZZZZ 8, 351359.Google ScholarPubMed
Todd, A. C. (2002). “L-shell X-ray fluorescence measurements of lead in bone: system development,” Phys. Med. Biol.PHMBA710.1088/0031-9155/47/3/311 47, 507522.CrossRefGoogle ScholarPubMed
Todd, A. C., Buchanan, R., Carroll, S., Moshier, E. L., Popovac, D., Slavkovich, V., and Graziano, J. H. (2001). “Tibia lead levels and methodological uncertainty in 12-year-old children,” Environ. Res.ENVRAL 86, 6065.CrossRefGoogle ScholarPubMed
Toribara, T. Y. (2001). “Analysis of single hair by XRF discloses mercury intake,” Hum. Exp. Toxicol.ZZZZZZ 20, 185188.CrossRefGoogle Scholar
Van Grieken, R., Van Meel, K., Makarovska, Y., Smekens, A., Behets, M., and Kazandjian, P. (2006). “Direct high-accuracy determination of precious metals in automotive catalysts using high-energy polarized-beam EDXRF,” The 55th Annual Denver X-ray Conference, Denver, CO, August 2006.Google Scholar
Vartsky, D., Shilstein, S., Bercovich, A., Huszar, M., Breskin, A., Chechik, R., Korotinsky, S., Malnick, S. D., and Moriel, E. (2003). “Prostatic zinc and prostate specific antigen: an experimental evaluation of their combined diagnostic value,” J. Urol. (Baltimore)JOURAA 170, 22582262.Google ScholarPubMed
Wielopolski, L., Rosen, J. F., Slatkin, D. N., Zhang, R., Kalef-Ezra, J. A., Rothman, J. C., Maryanski, M., and Jenks, S. T. (1989). “In vivo measurement of cortical bone lead using polarized X rays,” Med. Phys.MPHYA610.1118/1.596353 16, 521528.CrossRefGoogle ScholarPubMed
Wobrauschek, P. (2006). “A review: XRF analysis of PB in bone,” The 55th Annual Denver X-ray Conference, Denver, CO, August 2006.Google Scholar
Zoeger, N., Pepponi, G., Wobrauschek, P., Streli, C., Roschger, P., Falkenberg, G., and Tampieri, A. (2006). “Lead in human cartilage: imaging and speciation by micro-XRF and micro-XANES,” The 55th Annual Denver X-ray Conference, Denver, CO, August 2006.Google Scholar