Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-11T04:54:39.420Z Has data issue: false hasContentIssue false

Overview of polycapillary X-ray optics

Published online by Cambridge University Press:  05 March 2012

Paul J. Schields*
Affiliation:
X-Ray Optical Systems, Inc., 30 Corporate Circle, Albany, New York 12203
David M. Gibson
Affiliation:
X-Ray Optical Systems, Inc., 30 Corporate Circle, Albany, New York 12203
Walter M. Gibson
Affiliation:
X-Ray Optical Systems, Inc., 30 Corporate Circle, Albany, New York 12203
Ning Gao
Affiliation:
X-Ray Optical Systems, Inc., 30 Corporate Circle, Albany, New York 12203
Huapeng Huang
Affiliation:
X-Ray Optical Systems, Inc., 30 Corporate Circle, Albany, New York 12203
Igor Yu. Ponomarev
Affiliation:
X-Ray Optical Systems, Inc., 30 Corporate Circle, Albany, New York 12203
*
a)Electronic mail: pschield@xos.com

Abstract

Polycapillary optics are utilized in a wide variety of applications and are integral components in many state of the art instruments. Polycapillary optics operate by collecting X-rays and efficiently propagating them by total external reflection to form focused and parallel beams. We discuss the general parameters for designing these optics and provide specific examples on balancing the interrelations of beam flux, source size, focal spot-size, and beam divergence. The development of compact X-ray sources with characteristics tailored to match the requirements of polycapillary optics allows substantial reduction in size, weight, and power of complete X-ray systems. These compact systems have enabled the development of portable, remote, and in-line sensors for applications in industry, science and medicine. We present examples of the utility and potential of these optics for enhancing a wide variety of X-ray analyses.

Type
New X-Ray Optics
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkd’ev, V. A., Kolomitsev, A. I., Kumakhov, M. A., Ponomarev, I. Yu., Khodeev, I. A., Chertov, Yu. P., and Shakparonov, M. (1989). “Wide-band X-ray optic with a large angular aperture,” Sov. Phys. Usp. SOPUAP 32, 271, sop, SOPUAP Usp. Fiz. Nauk 157, 529537 (March).CrossRefGoogle Scholar
Bates, S. (1998). Sixth European Powder Diffraction Conference, Budapest (oral presentation).Google Scholar
Chen, Z. W., Youngman, R., Bievenue, T., Xiao, Q.-F., Turcu, I. C. E., Grygier, R. K., and Mrowka, S. (1999). “Polycapillary collimator for laser-generated plasma source X-ray lithography,” Proc. SPIE PSISDG 3767, 5258. spi, PSISDG CrossRefGoogle Scholar
Compton, A. H. (1923). “The total reflection of X-rays,” Philos. Mag. PHMAA4 45, 1121. phm, PHMAA4 CrossRefGoogle Scholar
Foundling, S. I., Li, M., Michell, B., Edved, S. M., and Durst, R. (2001). “Proteum M: The compact laboratory solution,” presented at the American Cryst. Association Conference, July.Google Scholar
Gao, N., Ponomarev, I., Xiao, Q. F., Gibson, W. M., and Carpenter, D. C. (1996). “Monolithic polycapillary focusing optics and their applications in microbeam X-ray fluorescence,” Appl. Phys. Lett. APPLAB 69, 15291531. apl, APPLAB Google Scholar
Gao, N.and Rohde, D. (2001). “Using a polycapillary optic as a spatial filter to improve micro X-ray analysis in low-vacuum and environmental SEM systems,” Proc. Microsc. Microanal. ZZZZZZ 7, 700.CrossRefGoogle Scholar
Gibson, W. M., Chen-Mayer, H. H., Mildner, D. F. R., Prask, H. J., Schultz, A. J., Youngman, R., Gna¨upel-Herold, Miller, T, M. E., and Vitt, R. (2001a). “Polycapillary optics based neutron focusing for small sample neutron crystallography,” Advances in X-Ray Analysis, Proceedings of the Denver X-Ray Conference.CrossRefGoogle Scholar
Gibson, D. and Gibson, W. (2001). “Polycapillary optics: an enabling technology for new applications,” Proceedings of the Denver 2001 X-ray Conference.Google Scholar
Gibson, W. M., Huang, H., Nicolich, J., Klein, P., and MacDonald, C. A. (2001b). “Optics for angular filtering of X-rays in two dimensions,” Proceedings of the Denver X-Ray Conference.Google Scholar
Gibson, W. M.and Kumakhov, M. A. (1992). “Application of X-ray and neutron optics,” Proc. SPIE PSISDG 1736, 172189; spi, PSISDG M. A. Kumakhov, U.S. Patent No. 5,192,869, “Device for controlling beams of particles, X-rays, and gamma quanta,” Applied May 1991, Issued June 1993.CrossRefGoogle Scholar
Gibson, W. M.and MacDonald, C. A. (1994). “Polycapillary optics: A status report,” Proc. SPIE PSISDG 2278, 148155. spi, PSISDG Google Scholar
Gibson, W. M., MacDonald, C. A., and Kumakhov, M. A. (1991). Technology Requirements for Biomedical Imaging, edited by S. K. Mun (I.E.E.E. Press, New York, NY), Vol. 2580, pp. 164–169.Google Scholar
Gubarev, M., Ciszak, E., Ponomarev, I., Gibson, W., and Joy, M. (2000a). “First results from a macromolecular crystallography system with a polycapillary collimating optic and a microfocus X-ray generator,” J. Appl. Crystallogr. JACGAR 33, 882887. acr, JACGAR CrossRefGoogle Scholar
Gubarev, M., Ciszak, E., Ponomarev, I., Gibson, W., and Joy, M. (2000b). “A compact X-ray system for macromolecular crystallography,” Rev. Sci. Instrum. RSINAK 71, 39003905. rsi, RSINAK CrossRefGoogle Scholar
Haller, M. (2000). XOS X-Ray Optical Systems, Inc. internal data (private communication).Google Scholar
Havrilla, G. J. and Gao, N. (2001). “Dual-capillary optic MXRF,” Proceedings of Denver 2001 X-Ray Conference.Google Scholar
Ho, J. X., Snell, E. H., Sisk, C. R., Ruble, J. R., Carter, D. C., Owens, S. M., and Gibson, W. M. (1998). “Stationary crystal diffraction with a monochromatic convergent X-ray source and application for macromolecular crystal data collection,” Acta Crystallogr., Sect. D: Biol. Crystallogr. ABCRE6 54, 200214. abd, ABCRE6 CrossRefGoogle ScholarPubMed
Huang, H., MacDonald, C. A., Gibson, W. M., Ho, J. X., Ruble, J. R., Chik, J., Parsegian, A, and Ponomarev, I. (2001). “Focusing polycapillary optics for diffraction,” Advances in X-Ray Analysis, Proceedings of the Denver X-Ray Conference.Google Scholar
Jentzch, F.and Na¨ring, E. (1931). “Die Forteitung von Lichtund Rötgenstrahlen durch Rören,” Z. Tech. Phys. (Leipzig) ZTPHAU 12, 185. ztp, ZTPHAU Google Scholar
Kardiawarman, A. A., York, B. R., Qian, X-W., Xiao, Q-F., MacDonald, C. A., and Gibson, W. M. (1995). “Application of a multifiber collimating lens to thin film structure analysis,” Proc. SPIE PSISDG 2519, 197. spi, PSISDG CrossRefGoogle Scholar
Kruger, D. G., Abreu, C. C., Hendee, E. G., Kocharian, A., Peppler, W. W., Mistretta, C. A., and MacDonald, C. A. (1996). “Imaging characteristics of X-ray capillary optics in mammography,” Med. Phys. MPHYA6 23, 187196. mph, MPHYA6 CrossRefGoogle ScholarPubMed
Kumakhov, M. A.and Komarov, F. F. (1990). “Multiple reflection from surface X-ray optics,” Phys. Rep. PRPLCM 191, 289350. prp, PRPLCM CrossRefGoogle Scholar
MacDonald, C. A.and Gibson, W. M. (1995). “Medical applications of polycapillary X-ray optics,” Proc. SPIE PSISDG 2519, 186196. spi, PSISDG CrossRefGoogle Scholar
Matney, K. M., Wormington, M., and Bowen, D. K. (1999). Bede Scientific Instruments (private communications).Google Scholar
Owens, S. M., Hofmann, F. A., MacDonald, C. A., and Gibson, W. M. (1997). “Microdiffraction using collimating and convergent beam polycapillary optics,” in Advances in X-Ray Analysis, Proceedings of the 46th Annual Denver X-ray Conference, Vol. 41, pp. 314–318.Google Scholar
Owens, S. M., Ullrich, J. B., Ponomarev, I.Carter, D. C., Sisk, R. C., Ho, J. X., and Gibson, W. M. (1996). “Polycapillary X-ray optics for macromolecular crystallography,” Proc. SPIE PSISDG 2859, 200209. spi, PSISDG CrossRefGoogle Scholar
Schields, P. J. and Huang, H. (2002). X-Ray Optical Systems, Inc. internal data.Google Scholar
Smith, D. K. (2002). “Particle statistics and whole-pattern methods in quantitative X-ray powder diffraction analysis,” Powder Diffr. PODIE2 16, 186191. pdj, PODIE2 CrossRefGoogle Scholar
Soejima, H. and Narusawa, T. (2000). “A compact X-ray spectrometer with multicapillary X-ray lens and flat crystals,” Proceedings of the 49th Annual Denver X-ray Conference, July.Google Scholar
Sugiro, F. A., MacDonald, C. A., and Gibson, W. M. (2001). “High contrast imaging with polycapillary optics,” Proceedings of the Denver X-ray Conference.Google Scholar
Wollman, D. A., Irwin, K. D., Hilton, G. C., Dulcie, L. L., Newbury, D. E., and Martinis, J. M. (1997b). “High-energy-resolution microcalorimeter spectrometer for x-ray microanalysis,” J. Microsc. JMICAR 188, 196223. jmi, JMICAR CrossRefGoogle Scholar
Wollman, D. A., Jezewski, C., Hilton, G. C., Xiao, Q.-F., Irwin, K. D., Dulcie, L. L., and Martinis, J. M. (1997a). “Use of polycapillary optics to increase the effective area of microcalorimeter spectrometers,” Proc. Microscopy and Microanalysis ZZZZZZ 3, 10751076.Google Scholar
Yamanoi, T.and Nakazawa, H. (2000). “Parallel-beam X-ray diffractometry using X-ray guide tubes,” J. Appl. Crystallogr. JACGAR 33, 389391. acr, JACGAR CrossRefGoogle Scholar
Yan, Y.and Ding, X. (1993). Nucl. Instrum. Methods Phys. Res. B NIMBEU 82, 121124. nib, NIMBEU Google Scholar