Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T07:17:25.520Z Has data issue: false hasContentIssue false

Powder diffraction study of LiCu2O2 crystals

Published online by Cambridge University Press:  05 March 2012

W. Paszkowicz*
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotniko´w 32/46, 02-668 Warsaw, Poland
M. Marczak
Affiliation:
The State Mint, ul. Pereca 21, 00-958 Warsaw, Poland
A. M. Vorotynov
Affiliation:
L.V. Kirenskii Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Akademgorodok, Russia
K. A. Sablina
Affiliation:
L.V. Kirenskii Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Akademgorodok, Russia
G. A. Petrakovskii
Affiliation:
L.V. Kirenskii Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Akademgorodok, Russia
*
a)Author to whom correspondence should be addressed; Electronic mail: paszk@ifpan.edu.pl

Abstract

LiCu2O2 crystals grown by spontaneous crystallization from the fluxed melt were studied by powder X-ray diffraction. The phase analysis shows that the applied growth conditions are suitable for preparation of a single-phase compound. The as-grown crystals contain only traces of foreign phases (Li2CuO2, CuO, Cu2O) typical for preparation of the LiCu2O2 compound. Attempts to anneal or quench the as-grown crystals led to two-phase samples containing LiCu2O2 and LiCu3O3. X-ray powder diffraction pattern of a LiCu2O2 crystal is reported and compared with literature data. The crystal structure is orthorhombic, space group Pnma, in agreement with literature data. Lattice parameters of the studied sample are a=5.7286(2) Å, b=2.8588(1) Å, and c=12.4143(3) Å. Time evolution of a diffraction pattern illustrates a slow increase of the secondary-phases contribution assumed to be due to interaction of the powdered crystal with humid air. A brief summary of compounds known in the Li–Cu–O system is included

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullayev, G.K., Rza-Zade, P.F., and Mamedov, K.S. (1982). “Physico-chemical study of ternary system Li2O-CuO-B2O3,” Russ. J. Inorg. Chem. RJICAQ 27, 10371040 (transl. from Zh. Neorg. Khim. 27, 1837–1841). rji, RJICAQ Google Scholar
Akimoto, J., Gotoh, Y., and Oosawa, Y. (1998). “Synthesis and structure refinement of LiCoO2 single crystals,” J. Solid State Chem. JSSCBI 141, 298302. jss, JSSCBI CrossRefGoogle Scholar
Arai, H., Okada, S., Sakurai, Y., and Yamaki, J. (1998). “Electrochemical and structural study of Li2CuO2, LiCuO2 and NaCuO2,” Solid State Ionics SSIOD3 106, 4553. ssi, SSIOD3 CrossRefGoogle Scholar
Aydinol, M.K., Kohan, A.F., Ceder, G., Cho, K., and Joannopoulos, J. (1997). “Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides,” Phys. Rev. B PRBMDO 56, 13541365. prb, PRBMDO CrossRefGoogle Scholar
Berger, R. (1991). “A note on the Li–Cu–O system,” J. Less-Common Met. JCOMAH 169, 3343. jco, JCOMAH CrossRefGoogle Scholar
Berger, R., Meetsma, A., van Smalen, S., and Sundberg, M. (1991). “The structure of LiCu2O2 with mixed-valence copper from twin-crystal data,” J. Less-Common Met. JCOMAH 175, 119129. jco, JCOMAH CrossRefGoogle Scholar
Berger, R., Onnerud, P., and Tellgren, R. (1992). “Structure refinements of LiCu2O2 and LiCu3O3: from neutron powder diffraction data,” J. Alloys Compd. JALCEU 184, 315322. jal, JALCEU CrossRefGoogle Scholar
Berger, R., Onnerud, P., Laligant, Y., and Le Bail, A. (1993). “The structure of Li3Cu2O4, a compound with formal mixed valence,” J. Alloys Compd. JALCEU 190, 295299. jal, JALCEU CrossRefGoogle Scholar
Berger, R., and Tergenius, L.-E. (1994). “Room temperature synthesis and structural characterization of monoclinic LiCuO2 by X-ray and neutron diffraction,” J. Alloys Compd. JALCEU 203, 203207. jal, JALCEU CrossRefGoogle Scholar
Berger, R.A. (1995). “On the symmetry of LiCuO2,” J. Solid State Chem. JSSCBI 114, 590591. jss, JSSCBI CrossRefGoogle Scholar
Boehm, M., Coad, S., Roessli, B., Zheludev, A., Zolliker, M., Boni, P., Paul, D.M., Eisaki, H., Motoyama, N., and Uchida, S. (1998). “Competing exchange interactions in Li2CuO2,” Europhys. Lett. EULEEJ 43, 7782. eul, EULEEJ CrossRefGoogle Scholar
Currie, D.B., and Weller, M.T. (1993). “Structure of the mixed-valence lithium cuprate Li3Cu2O4 by powder neutron diffraction,” J. Mater. Chem. JMACEP 3, 229232. jtc, JMACEP CrossRefGoogle Scholar
Ewing, M. (1983). “Lithium copper oxide for memories and other low-drain devices,” New Electronics NWELAC 16, 5153., NWELAC Google Scholar
Fleischer, N.A., Lyubomirsky, I., Scolnik, Y., and Manassen, J. (1993). “Electrochemical reduction of the high Tc superconductor YBa2Cu3Oy by lithium via new compound formation,” Solid State Ionics SSIOD3 59, 5970. ssi, SSIOD3 CrossRefGoogle Scholar
Fritschij, F.C., Brom, H.B., and Berger, R. (1998). “NMR and susceptibility characterization of two oxocuprates with antiferromagnetic Cu-chains: LiCuO2 and LiCu2O2,” Solid State Commun. SSCOA4 107, 719723. ssc, SSCOA4 CrossRefGoogle Scholar
Goshall, N.A. (1986). “Lithium transport in ternary lithium-copper-oxygen cathode materials,” Solid State Ionics SSIOD3 18–19, 788793. ssi, SSIOD3 CrossRefGoogle Scholar
Hibble, S.J., Koehler, J., Simon, A., and Paider, S. (1990). “LiCu2O2 and LiCu3O3: New mixed valent copper oxides,” J. Solid State Chem. JSSCBI 88, 534542. jss, JSSCBI CrossRefGoogle Scholar
Hoffman, R., Hoppe, R., and Scha¨fer, W. (1989). “Neutron diffraction on Li2CuO2,” Z. Anorg. Allg. Chem. ZAACAB 578, 1826. zaa, ZAACAB CrossRefGoogle Scholar
Hoppe, R., and Rieck, H. (1970). “Die Kristallstruktur von Li2CuO2,” Z. Anorg. Allg. Chem. ZAACAB 379, 157164. zaa, ZAACAB CrossRefGoogle Scholar
Iijima, T., Toyoguchi, Y., Nishimura, J., and Ogawa, H. (1980). “Button-type lithium battery using copper oxide as a cathode,” J. Power Sources JPSODZ 5, 99109. jso, JPSODZ CrossRefGoogle Scholar
Imai, K., Koike, M., Takei, H., Sawa, H., Shiomi, D., Nozawa, K., and Kinoshita, M. (1992). “Preparation, crystal structure and magnetic property of a new compound LiCuO2,” J. Phys. Soc. Jpn. JUPSAU 61, 18191820. jup, JUPSAU CrossRefGoogle Scholar
Jacob, M.M.E., Hassan, M.S., Daud, J., and Arof, A.K. (2000). “A new cathode material LiCu2O2 for secondary lithium batteries,” J. New Mater. Electrochem. Syst. JMESFQ 3, 37.Google Scholar
Klassen, H., and Hoppe, R. (1982). “Die K4{Ag4O4}—Strukturfamilie,” Z. Anorg. Allg. Chem. ZAACAB 485, 101114. zaa, ZAACAB CrossRefGoogle Scholar
Klemm, W., Wehrmeyer, G., and Bade, H. (1959). “Weitere Beitrage zur Kenntnis der Alkalimetalleuptrate(III),” Z. Elektrochem. ZEELAI 63, 56. zee, ZEELAIGoogle Scholar
Kucharski, R., and Gontarz, Z. (2000). “Reduction and oxidation of simple oxocuprates,” J. Thermal Anal. Calorim. JTACF7 60, 219227., JTACF7 CrossRefGoogle Scholar
Kuksenko, S.P., Lugovoi, V.P., and Prokopenko, V.T. (1997). “On the possibility of direct replacement of mercury-zinc cells by lithium cells with copper-oxide cathode,” Russ. J. Appl. Chem. ZZZZZZ 70, 915918.Google Scholar
Kuznetsov, M.V. (1995). “External action on immobile and mobile elements of 1-23 high-temperature superconductors,” Int. J. Self-Propag. High-Temp. Synthesis ISHSE3 4, 5967., ISHSE3 Google Scholar
Kuznetsov, M.V., Morozov, Yu.G., and Neresyan, M.D. (1995). “The self-propagating high-temperature synthesis of alkali cuprates,” Inorg. Mater. INOMAF 31, 221223 (transl. from Neorg. Mater. 31, 237–239). inm, INOMAF Google Scholar
Kuznetsov, M.V. (1998). “Self-propagating high-temperature synthesis of alkali cuprites,” Inorg. Mater. INOMAF 34, 4445 (transl. from Neorg. Mater. 34, 55–56). inm, INOMAF Google Scholar
Lin, J.H., Li, K., Ruan, S.K., Su, M.Z., and Schweda, E. (1996). “Thermostability of LiCu2O2 and LiCu3O3,Chin. Chem. Lett. CCLEE7 7, 195198., CCLEE7 Google Scholar
Losert, W.and Hoppe, R. (1984). “On Li2CuO2,” Z. Anorg. Allg. Chem. ZAACAB 515, 95100. zaa, ZAACAB CrossRefGoogle Scholar
Losert, W., and Hoppe, R. (1985). “Zur Kenntnis der K4{Ag4O4}- Verwandtschaft,” Z. Anorg. Allg. Chem. ZAACAB 524, 7. zaa, ZAACAB CrossRefGoogle Scholar
Mehta, A., DiCarlo, J., and Navrotsky, A. (1992). “Nature of hole states in cuprate superconductors,” J. Solid State Chem. JSSCBI 101, 173185. jss, JSSCBI CrossRefGoogle Scholar
Migeon, H.-N., Courtois, A., Zanne, M., Gleitzer, C., and Aubry, J. (1975). “Preparation and properties of a lithium-copper (III) oxide: Li3CuO3Rev. Chim. Miner. RVCMA8 12, 203209. rvm, RVCMA8Google Scholar
Migeon, H.-N., Zanne, M., and Gleitzer, C. (1976). “Preparation and study of LiCuO,” J. Solid State Chem. JSSCBI 16, 325330. jss, JSSCBI CrossRefGoogle Scholar
Mizuno, Y., Tohyama, T., Maekawa, S., Osafune, T., Motoyama, N., Eisaki, H., and Uchida, S. (1998). “Electronic states and magnetic properties of edge-sharing Cu–O chains,” Phys. Rev. B PRBMDO 57, 53265335. prb, PRBMDO CrossRefGoogle Scholar
Mizuno, Y., Tohyama, T., and Maekawa, S. (1999). “Interchain interactions and magnetic properties of Li2CuO2,” Phys. Rev. B PRBMDO 60, 62306233. prb, PRBMDO CrossRefGoogle Scholar
Okada, K., and Kotani, A.J. (1998). “Large-cluster effects on core-level photoemission spectra of quasi-one-dimensional copper compounds,” J. Electron Spectrosc. Relat. Phenom. JESRAW 88, 255260. jer, JESRAW CrossRefGoogle Scholar
Okuda, K., Noguchi, S., Konishi, K., Deguchi, H., and Takeda, K. (1992). “Magnetism of one-dimensional copper oxides related to HTSC,” J. Magn. Magn. Mater. JMMMDC 104, 817818. jmm, JMMMDC CrossRefGoogle Scholar
Owens, F.J. (1999). “Evidence of a phase transition in Cu–O chains of LiCuO2,” Physica C PHYCE6 313, 6569. phc, PHYCE6 CrossRefGoogle Scholar
Paszkowicz, W. (1989). “INDEXING—Program for indexing powder patterns of cubic, tetragonal, hexagonal and orthorhombic substances on personal computers,” J. Appl. Crystallogr. JACGAR 22, 186187. acr, JACGAR CrossRefGoogle Scholar
Paszkowicz, W., Vorotynov, A., Sablina, K., and Petrakovskii, G. (1995). “Powder diffraction data for LiCu2O2,Bull. Czech Slovak Crystallogr. Assoc. ZZZZZZ 2, 68.Google Scholar
Patat, S., Blunt, D.P., Chippindale, A.M., and Dickens, P.G. (1991). “The thermochemistry of LiCuO, Li2CuO2 and LiCu2O2,” Solid State Ionics SSIOD3 46, 325329. ssi, SSIOD3 CrossRefGoogle Scholar
PDF2 database (1999). International Centre for Diffraction Data® (PA).Google Scholar
Rhemes G. (1986). “Batteries: A solution for each need,” Electron. Industr. 110, 87–90.Google Scholar
Ritchie, A.G., and Mullins, A.P. (1994). “Copper oxide as a high temperature battery cathode material,” J. Power Sources JPSODZ 51, 403407. jso, JPSODZ CrossRefGoogle Scholar
Sapina, F., Rodrı´guez-Carvajal, J., Sanchis, M.J., Iba´nez, R., Beltra´n, A., and Beltra´n, D. (1990). “Crystal and magnetic structure of Li2CuO2,” Solid State Commun. SSCOA4 74, 779784. ssc, SSCOA4 CrossRefGoogle Scholar
Shirvinskaya, A.K., and Petrova, M.A. (1987). Diagrammy Sostoyaniya Sistem Tugoplavkikh Oksidov. Spravochnik. Dvoinye Sistemy, Constitution Diagrams of Refractory Oxides Handbook. Binary Systems, Vol. 5 part 3 (Nauka, Leningrad), p. 6 (in Russian).Google Scholar
Slack, G.A., and Mroczkowski, S. (1993). “The dissociation pressure of some lithium copper oxides and lithium peroxide,” J. Solid State Chem. JSSCBI 107, 489496. jss, JSSCBI CrossRefGoogle Scholar
Staub, U., Roessli, B., and Amato, A. (2000). “Magnetic ordering in Li2CuO2 studied by μ SR technique,” Physica B PHYBE3 289, 299302. phb, PHYBE3 CrossRefGoogle Scholar
Suba, K., Singh, O.G., Padalia, B.D., Prakash, O., Chandrasekharam, D., and Udupa, M.R. (1994). “On the substitution of lithium in copper oxide,” Mater. Res. Bull. MRBUAC 29, 443450. mrb, MRBUAC CrossRefGoogle Scholar
Vorotinov, A.M., Pankrats, A.I., Petrakovskii, G.A., Vorotinova, O.V., and Szymczak, H. (1998). “ESR study of LiCu2O2 single crystals,” J. Magn. Magn. Mater. JMMMDC 188, 233236. jmm, JMMMDC CrossRefGoogle Scholar
Vorotynov, A.M., Pankrats, A.I., Petrakovskii, G.A., Sablina, K.A., Paszkowicz, W., and Szymczak, H. (1998). “Magnetic and resonance properties of LiCu2O2 single crystals,” J. Exp. Theor. Phys. JTPHES 86, 10201025 (transl. from Zhurn. Eksp. Teor. Fiziki, 113, 1866–1876). jex, JTPHES CrossRefGoogle Scholar
Weht, R., and Pickett, W.E. (1998). “Extended moment formation and second neighbor coupling in Li2CuO2,” Phys. Rev. Lett. PRLTAO 81, 25022505. prl, PRLTAO CrossRefGoogle Scholar
Wizansky, A.R., Rauch, P.E., and DiSalvo, F.J. (1989). “Powerful oxidizing agents for the oxidative deintercalation of lithium from transition-metal oxides,” J. Solid State Chem. JSSCBI 81, 203207. jss, JSSCBI CrossRefGoogle Scholar
Zatsepin, D.A., Galakhov, V.R., Korotin, M.A., Fedorenko, V.V., Kurmaev, E.Z., Bartkowski, S., Neumann, M., and Berger, R. (1998). “Valence states of copper ions and electronic structure of LiCu2O2,” Phys. Rev. B PRBMDO 57, 43774381. prb, PRBMDO CrossRefGoogle Scholar