Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T13:48:22.254Z Has data issue: false hasContentIssue false

Rietveld refinement of X-ray powder data and bond-valence calculations of NdSrNi0.5Cr0.5O4-δ compound

Published online by Cambridge University Press:  29 February 2012

Hanèn Chaker*
Affiliation:
Unité de Recherche de Chimie des Matériaux, ISSBAT, Université de Tunis El Manar, 9 Avenue Dr. Zoheir Safi, 1006 Tunis, Tunisia
Thierry Roisnel
Affiliation:
Centre de Diffractométrie X, UMR 6226, Sciences Chimiques de Rennes, CNRS, Université de Rennes 1, Bat. 10B, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes Cedex, France
Monica Ceretti
Affiliation:
Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, «Matériaux Inorganiques: Chimie Douce Et Réactivité», Bat. 10B, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes Cedex, France
R. Ben Hassen
Affiliation:
Unité de Recherche de Chimie des Matériaux, ISSBAT, Université de Tunis El Manar, 9 Avenue Dr. Zoheir Safi, 1006 Tunis, Tunisia
*
a)Author to whom correspondence should be addressed. Also at Faculté des Sciences de Sfax, Route de Soukra Km 3,5 B.P. 802-3018 Sfax, Tunisie. Electronic mail: hanen_chaker@yahoo.fr

Abstract

Compound from the solid-solution NdSrNi1−xCrxO4−δ, 0≤x≤1, has been prepared using conventional solid-state method and was characterized by X-ray powder diffraction. The NdSrNi0.5Cr0.5O4−δ sample shows the adoption of the K2NiF4-type structure based on the tolerance factor calculation. X-ray diffraction analysis using the Rietveld method was carried out and it was found that NdSrNi0.5Cr0.5O4−δ compound crystallizes in tetragonal symmetry with space group I4/mmm. The lattice parameters are found to be at room temperature, a=3.8012(3) Å and c=12.4812(1) Å. For X-ray diffraction data, the reliability factors are RB=0.034, Rwp=0.089, , and χ2=1.17. Bond-valence sum calculations were performed for nickel and chromium. The changes in unit-cell parameters are discussed in terms of oxygen stoichiometry and transition metal (3d) oxidation state from the perspective of the Brown bond-valence sum calculation theory.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbuckle, B. W., Ramanujachary, K. V., Zhang, Z., and Greenblatt, M. (1990). “Investigations on the structural, electrical, and magnetic properties of Nd2-xSr1-xNiO4+δ,” J. Solid State Chem. JSSCBI 88, 278290.10.1016/0022-4596(90)90225-MCrossRefGoogle Scholar
Bassat, J. M., Odier, P., and Gervais, F. (1987). “Two-dimensional plasmons in nonstoichiometric La2NiO4,” Phys. Rev. B PLRBAQ 35, 71267128.10.1103/PhysRevB.35.7126Google Scholar
Brown, I. D. (1978). “Bond valences—A simple structural model for inorganic chemistry,” Chem. Soc. Rev. CSRVBR 7, 359376.10.1039/cs9780700359CrossRefGoogle Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 41, 244247.10.1107/S0108768185002063CrossRefGoogle Scholar
Buttrey, D. J. and Honig, J. M. (1988). “Influence of nonstoichiometry on the magnetic properties of Pr2NiO4 and Nd2NiO4,” J. Solid State Chem. JSSCBI 72, 3841.10.1016/0022-4596(88)90006-0Google Scholar
Cava, R. J., Batlogg, B., Palstra, T. T., Krajewski, J. J., Peck, W. F., Ramirez, A. P., and Rupp, L. W. (1991). “Magnetic and electrical properties of La2-xSrxNiO4+δ,” Phys. Rev. B PLRBAQ 43, 12291232.10.1103/PhysRevB.43.1229CrossRefGoogle ScholarPubMed
Chaker, H., Roisnel, T., Cador, O., Amami, M., and Ben Hassen, R. (2006). “Neutron powder diffraction studies of NdSrNi1-xCuxO4-δ, 0≤x≤1, and magnetic properties,” J. Solid State Sci. 8, 142148.10.1016/j.solidstatesciences.2005.10.009Google Scholar
Chaker, H., Roisnel, T., Potel, M., and Ben Hassen, R. (2004). “Structural and electrical changes in NdSrNiO4-δ by substitute nickel with copper,” J. Solid State Chem. JSSCBI 177, 40674072.10.1016/j.jssc.2004.06.028CrossRefGoogle Scholar
Chen, C. H., Cheong, S.-W., and Cooper, A. S. (1993). “Charge modulations in La2-xSrxNiO4+y: Ordering of polarons,” Phys. Rev. Lett. PRLTAO 71, 24612464.10.1103/PhysRevLett.71.2461CrossRefGoogle ScholarPubMed
Cheong, S.-W., Hwang, H. Y., Chen, C. H., Batlogg, B., Rupp, L. W., and Carter, S. A. (1994). “Charge-ordered states in (La,Sr)2NiO4 for hole concentrations nh=1/3 and 1/2,” Phys. Rev. B PLRBAQ 49, 70887091.10.1103/PhysRevB.49.7088CrossRefGoogle Scholar
Chow, K. H., Pattenden, P. A., Blundell, S. J., Hayes, W., Pratt, F. L., Jestadt, Th., Green, M. A., Millburn, J. E., Rosseinsky, M. J., Hitti, B., Dunsiger, S. R., Kiefl, R. F., Chen, C., and Chowdhury, A. J. (1996). “Muon-spin-relaxation studies of magnetic order in heavily doped La2-xSrxNiO4+δ,” Phys. Rev. B PLRBAQ 53, R14725R14728.10.1103/PhysRevB.53.R14725CrossRefGoogle ScholarPubMed
Demazeau, G., Pouchard, M., and Hagenmuller, P. (1976). “Sur quelques nouveaux composés oxygénés du nickel +III de structure K2NiF4,” J. Solid State Chem. JSSCBI 18, 159162.10.1016/0022-4596(76)90091-8CrossRefGoogle Scholar
Ganguly, P. and Rao, C. N. R. (1984). “Crystal chemistry and magnetic properties of layered metal oxides possessing the K2NiF4 or related structures,” J. Solid State Chem. JSSCBI 53, 193216.10.1016/0022-4596(84)90094-XCrossRefGoogle Scholar
Ganguly, P., Vasanthacharya, N. Y., Rao, C. N. R., and Edwards, P. P. (1984). “Composition-controlled metal-insulator transitions and minimum metallic conductivity in the oxide systems LaNi1-xMxO3 (M=Cr, Mn, Fe, or Co),” J. Solid State Chem. JSSCBI 54, 400406.10.1016/0022-4596(84)90171-3CrossRefGoogle Scholar
García-Muňoz, J. L., Rodríguez-Carvajal, J., Lacorre, P., and Torrance, J. B. (1992). “Neutron-diffraction study of RNiO3 (R=La,Pr,Nd,Sm): Electronically induced structural changes across the metal-insulator transition,” Phys. Rev. B PLRBAQ 46, 44144425.10.1103/PhysRevB.46.4414CrossRefGoogle Scholar
Granados, X., Fontcuberta, J., Vallet-Regi, M., Sayagué, M. J., and Gonza-Calbet, J. M. (1993). “Band gap closing in La2-xSrxNiO4+δ,” J. Solid State Chem. JSSCBI 102, 455464.10.1006/jssc.1993.1058Google Scholar
Hofer, H. E. and Kock, W. F. (1993). “Crystal chemistry and thermal behavior in the La(Cr,Ni)O3 perovskite system,” J. Electrochem. Soc. JESOAN 140, 28892894.10.1149/1.2220928CrossRefGoogle Scholar
Jin, F., Endo, T., Takizawa, H., and Shimada, M. (1994). “Effects of divalent cation substitution on sinterability and electrical properties of LaCrO3 ceramics,” J. Solid State Chem. JSSCBI 113, 138144.10.1006/jssc.1994.1352Google Scholar
Kato, M., Maeno, Y., and Fujita, T. (1991). “Two-dimensional antiferromagnetic correlation with spin ½ in magnetic susceptibility of (La,Sr)2NiO4,” Physica C PHYCE6 176, 533540.10.1016/0921-4534(91)90060-CCrossRefGoogle Scholar
Lundqvist, P., Tengroth, C., Rapp, O., Tellgren, R., and Hegedüs, Z. (1996). “Neutron-diffraction studies and interatomic distances in Ca-Pr doped NdBa2Cu3O7-δ,” Physica C PHYCE6 269, 231241.10.1016/0921-4534(96)00456-XCrossRefGoogle Scholar
Millburn, J. E. and Rosseinsky, M. J. (1997). “LaSrCrxNi1-xO4+δ: Crystal chemistry, magnetism, and the stabilization of NiI in an oxide environment,” J. Chem. Mater. 9, 511522.10.1021/cm960357vGoogle Scholar
Pellegrin, E., Zaanen, J., Lin, H. J., Meigs, G., Chen, C. T., Ho, G. H., Eisaki, H., and Uchida, S. (1996). “O 1s near-edge X-ray absorption of La2-xSrxNiO4+δ: Holes, polarons, and excitons,” Phys. Rev. B PLRBAQ 53, 1066710679.10.1103/PhysRevB.53.10667CrossRefGoogle ScholarPubMed
Rodríguez-Carvajal, J. (1990). “FULLPROF: A program for Rietveld refinement and pattern matching analysis,” Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Sachan, V., Buttrey, D. J., Tranquada, J. M., Lorenzo, J. E., and Shirane, G. (1995). “Charge and spin ordering in La2-xSrxNiO4.00 with x=0.135 and 0.20,” Phys. Rev. B PLRBAQ 51, 1274212746.10.1103/PhysRevB.51.12742CrossRefGoogle ScholarPubMed
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN 32, 751767.10.1107/S0567739476001551CrossRefGoogle Scholar
Strangfeld, Th., Westerholt, K., and Bach, H. (1991). “Electronic charge transport and magnetism of the system (La1-xSrx)2NiO4+δ,,” Physica C PHYCE6 183, 110.10.1016/0921-4534(91)90758-QGoogle Scholar
Takeda, Y., Kanno, R., Sakano, M., Yamamoto, O., Takano, M., Bando, Y., Akinaga, H., Takita, K., and Goodenough, J. B. (1990). “Crystal chemistry and physical properties of La2-xSrxNiO4 (0≤x≤1.6),” Mater. Res. Bull. MRBUAC 25, 293306.10.1016/0025-5408(90)90100-GGoogle Scholar
Takeda, Y., Nishijima, M., Imanishi, N., Kanno, R., Yamamoto, O., and Takano, M. (1992). “Crystal chemistry and transport properties of Nd2-xAxNiO4 (A=Ca, Sr, or Ba, 0≤x≤1.4),” J. Solid State Chem. JSSCBI 96, 7283.10.1016/S0022-4596(05)80299-3CrossRefGoogle Scholar
Tallon, J. L. (1990). “The relationship between bond-valence sums and Tc in cuprate superconductors,” Physica C PHYCE6 168, 8590.10.1016/0921-4534(90)90107-PCrossRefGoogle Scholar