Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T14:20:24.283Z Has data issue: false hasContentIssue false

Stability and structure changes of Na-titanate nanotubes at high temperature and high pressure

Published online by Cambridge University Press:  24 April 2014

Huifang Xu*
Affiliation:
Department of Geoscience, University of Wisconsin–Madison, Madison, Wisconsin 53706
Chenxiang Li
Affiliation:
Department of Geoscience, University of Wisconsin–Madison, Madison, Wisconsin 53706
Duanwei He
Affiliation:
LANSCE, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Yingbing Jinag
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131
*
a)Author to whom correspondence should be addressed. Electronic mail: hfxu@geology.wisc.edu

Abstract

Stability of Na-titanate-based nanotubes at high temperature and pressure is investigated using X-ray diffraction and energy-dispersive X-ray diffraction (EDXRD). Our results show that the nanotubes can be stable at ~400 °C. Higher temperature annealing of nanotubes result in opening and flattening of the nanotubes, and subsequent structural transformation to Na2Ti6O13-based structure via an intermediate phase with Na0.23TiO2-like structure. In situ EDXRD using diamond anvil cell indicates that the nanotubes collapse at about 15 GPa, and are finally transformed into an amorphous phase at about 30 GPa. The nanotubes kept in an amorphous state were further compressed to 50 GPa according to our in situ EDXRD observation. Titanate nanotubes are mechanically stronger than carbon nanotubes under static compression.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bavykin, D., Lapkin, A., Plucinski, P., Friedrich, J., and Walsh, F. (2005). “Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes,” J. Phys. Chem. B, 108, 1942219427.CrossRefGoogle Scholar
Chen, L., Wang, L., Tang, D., Xie, S., and Jin, C. (2001). “X-ray diffraction study of carbon nanotubes under high pressure,” Chin. Phys. Lett., 18, 577578.CrossRefGoogle Scholar
Chesnokov, S. A., Nalimova, V. A., Rinzler, A. G., Smalley, R. E., and Fischer, J. E. (1999). “Mechanical energy storage in carbon nanotube springs,” Phys. Rev. Lett., 82, 343346.CrossRefGoogle Scholar
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K. (1998). “Formation of titanium oxide nanotube,” Langmuir, 14, 31603163.CrossRefGoogle Scholar
Liu, H., Yang, D., Zheng, Z., Ke, X., Waclawik, E., Zhu, H., and Frost, R. L. (2010). “A Raman spectroscopic and TEM study on the structural evolution of Na2Ti3O7 during the transition to Na2Ti6O13,” J. Raman Spectrosc., 41, 13311337.CrossRefGoogle Scholar
Mendez-Cruz, M., Ramirez-Solis, J., and Zanella, R. (2011). “CO oxidation on gold nanoparticles supported over titanium oxide nanotubes,” Catal. Today, 166, 172179.CrossRefGoogle Scholar
Ntho, T. A., Anderson, J. A., and Scurrell, M. S. (2008). “CO oxidation over titanate nanotube supported Au: deactivation due to bicarbonate,” J. Catalysis, 261, 94100.CrossRefGoogle Scholar
Sikuvhihulu, L. C., Coville, N. J., Ntho, T. A., and Scurrell, M. S. (2008). “Potassium titanate: an alternative support for gold catalyzed carbon monoxide oxidation,” Catal. Lett., 123, 193197.CrossRefGoogle Scholar
Tian, Z. R., Voigt, J. A., Liu, J., Mckenzie, B., and Xu, H. (2003). “Large oriented arrays and continuous films of TiO2-based nanotubes,” J. Am. Chem. Soc., 125, 1238412385.CrossRefGoogle Scholar
Venkateswaran, U. D., Brandsen, E. A., Schlecht, U., Rao, A. M., Richter, E., Loa, I., Syassen, K., and Eklund, P. C. (2001). “High pressure studies of the Raman-active phonons in carbon nanotubes,” Phys. Status Solidi b, 223, 225236.3.0.CO;2-6>CrossRefGoogle Scholar
Xu, H., Vanamu, G., Nie, Z., Konishi, H., Yeredla, R., Phillips, J., and Wang, Y. (2006). “Photocatalytic oxidation of a volatile organic component of acetaldehyde using titanium oxide nanotubes,” J. Nanomater., 2006(78902), 18.CrossRefGoogle Scholar