Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T08:01:56.627Z Has data issue: false hasContentIssue false

Structural analysis of ZnO thin films obtained by d.c. sputtering and electron beam evaporation

Published online by Cambridge University Press:  06 March 2012

M. E. L. Sabino
Affiliation:
Fundação Centro Tecnológico de Minas Gerais (CETEC), Av. José Cândido da Silveira, 2000 – Horto, 30170-000 Belo Horizonte, Minas Gerais, Brazil
D. M. Oliveira
Affiliation:
Fundação Centro Tecnológico de Minas Gerais (CETEC), Av. José Cândido da Silveira, 2000 – Horto, 30170-000 Belo Horizonte, Minas Gerais, Brazil
V. D. Falcão
Affiliation:
Fundação Centro Tecnológico de Minas Gerais (CETEC), Av. José Cândido da Silveira, 2000 – Horto, 30170-000 Belo Horizonte, Minas Gerais, Brazil
A. C. Bernardes-Silva
Affiliation:
Fundação Centro Tecnológico de Minas Gerais (CETEC), Av. José Cândido da Silveira, 2000 – Horto, 30170-000 Belo Horizonte, Minas Gerais, Brazil
J. R. T. Branco
Affiliation:
Fundação Centro Tecnológico de Minas Gerais (CETEC), Av. José Cândido da Silveira, 2000 – Horto, 30170-000 Belo Horizonte, Minas Gerais, Brazil

Abstract

ZnO thin films were produced by argon plasma assisted electron beam vacuum evaporation and d.c. magnetron sputtering deposition techniques. ZnO films are used in solar cells as transparent contact in heterojunction cells, and can be deposited on a variety of substrates by different techniques, including electron beam deposition and sputtering and laser ablation. ZnO thin films were prepared for photovoltaic applications and the structural properties were studied. The results showed that the sputtering and the vacuum evaporation techniques resulted, respectively, in a textured ZnO and ZnO plus Zn mixed phases. The annealing of the vacuum evaporation ZnO films resulted in films with high crystallinity.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Asmar, R., Ferblantier, G., Sauvajol, J.L., Giani, A., Khoury, A., and Foucaran, A. (2005). “Fabrication and characterization of high quality ZnO thin films by reactive electron beam evaporation technique,” Microelectron. J.MICEB9 36, 694699. mij, MICEB9 CrossRefGoogle Scholar
Barrett, C.S. and Massalski, B.T. (1980). Structure of Metals: Crystallographic Methods, Principles, and Data (Pergamon Press, Oxford), p. 204.Google Scholar
Bougrine, A., El Hichou, A., Addou, M., Ebothé, J., Kachouane, A., and Troyon, M. (2003). “Structural, optical and cathodoluminescence characteristics of undoped and tin-doped ZnO thin films prepared by spray pyrolysis,” Mater. Chem. Phys.MCHPDR 80, 438445. mcp, MCHPDR CrossRefGoogle Scholar
Chopra, K.L., Major, S., and Pandya, D.K. (1983). “Transparent conductors—A status review,” Thin Solid FilmsTHSFAP 102, 146. tsf, THSFAP CrossRefGoogle Scholar
Czternastek, H. (2004). “ZnO thin films prepared by high pressure magnetron sputtering,” Opto-Electron. Rev.OELREM 12, 4952. oel, OELREM Google Scholar
Fang, Z.B., Yan, Z.J., Tan, Y.S., Liu, X.Q., and Wang, Y.Y. (2005). “Influence of post-annealing treatment on the structure properties of ZnO films,” Appl. Surf. Sci.ASUSEE 241, 303308. asu, ASUSEE CrossRefGoogle Scholar
Gao, W., Li, Z.W., Harikisun, R., and Chang, S.-S. (2003). “Zinc oxide films formed by oxidation of zinc under low partial pressure of oxygen,” Mater. Lett.MLETDJ 57, 14351440. mal, MLETDJ CrossRefGoogle Scholar
ICDD (2000). “Powder Diffraction File,” International Centre for Diffraction Data, edited by McClune, W. F., Newtown Square, PA, 19073-3272.Google Scholar
ICDD (2005). “Powder Diffraction File,” International Centre for Diffraction Data, edited by McClune, W. F., Newtown Square, PA, 19073–3272.Google Scholar
Kroll, U., Meier, J., Benagli, S., Roschek, T., Spitznagel, J., Hügli, A., Borello, D., Mohr, M., Kluth, O., Zimin, D., Monteduro, G., Springer, J., Androutsopoulos, G., Ellert, C., Stein, W., Buechel, G., Zindl, A., Buechel, A., and Koch-Ospelt, D. (2006). “Overview of thin film silicon solar cell and module developments at Oerlikon Solar,” in 21st European Photovoltaic Solar Energy Conference: Proceedings of the International Conference held in Dresden, Germany, 4–8 September 2006, edited by Poortmans, J. , Ossenbrink, H. , Dunlop, E. , and Helm, P. (WIP-Renewable Energies, Munich), pp. 1546–1551.Google Scholar
Lee, J., Li, Z., Hodgson, M., Metson, J., Asavod, A., and Gao, W. (2004). “Structural, electrical and transparent properties of ZnO thin films prepared by magnetron sputtering,” Curr. Appl. Phys.ZZZZZZ 4, 398401. b9g, ZZZZZZ CrossRefGoogle Scholar
Li, Z. and Gao, W. (2004). “ZnO thin films with DC and RF reactive sputtering,” Mater. Lett.MLETDJ 58, 13631370. mal, MLETDJ CrossRefGoogle Scholar
Ondo-Ndong, R., Ferblantier, G., Pascal-Delannoy, F., Boyer, A., and Foucaran, A. (2003). “Electrical properties of zinc oxide sputtered thin films,” Microelectron. J.MICEB9 34, 10871092. mij, MICEB9 CrossRefGoogle Scholar
Shah, A., Torres, P., Tscharner, R., Wyrsch, N., and Keppner, H. (1999). “Photovoltaic technology: The case for thin-film solar cells,” ScienceSCIEAS 285, 692698. sci, SCIEAS CrossRefGoogle ScholarPubMed
Sun, L., Cheng, W., Lin, F., Ma, X., and Shi, W. (2006). “Changes of structure and optical energy gap induced by oxygen pressure during the deposition of ZnO films,” Physica BPHYBE3 381, 109112. phb, PHYBE3 CrossRefGoogle Scholar
Wu, H.Z., He, K.M., Qiu, D.J., and Huang, D.M. (2000). “Low-temperature epitaxy of ZnO films on Si(0 0 1) and silica by reactive e-beam evaporation,” J. Cryst. GrowthJCRGAE 217, 131137. jcr, JCRGAE CrossRefGoogle Scholar