Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T05:34:37.086Z Has data issue: false hasContentIssue false

Structural and spectroscopic study of NaSbR(PO4)3 (R = Cr, Fe, In) phases

Published online by Cambridge University Press:  14 November 2013

Abderrahim Aatiq*
Affiliation:
Département de Chimie, Laboratoire de Physico-Chimie des Matériaux Appliqués, Université HassanII-Mohammédia, Faculté des Sciences Ben M'Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
My Rachid Tigha
Affiliation:
Département de Chimie, Laboratoire de Physico-Chimie des Matériaux Appliqués, Université HassanII-Mohammédia, Faculté des Sciences Ben M'Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
*
a) Electronic-mail:a_aatiq@yahoo.fr Fax : +212-522 70 46 75

Abstract

Crystallographic structures of the three NaSbR(PO4)3 (R = Cr, Fe, In) phases were determined at room temperature from X-ray powder diffraction (XRD) data using the Rietveld analysis. The three compounds belong to the Nasicon structural family. The presence of the (303) reflection in all XRD spectra of NaSbR(PO4)3 shows clearly that all compounds crystallise in rhombohedral system with R3 space group. Na atoms are practically ordered within the two positions, 3a and 3b, of M1 sites. Structure refinements show also a partially-ordered distribution of Sb5+ and R3+ ions within the Nasicon framework. A Raman and Infrared spectroscopic study was used to obtain further structural information about the nature of bonding in NaSbR(PO4)3 (R = Cr, Fe, In) phases.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aatiq, A. and Dhoum, H. (2006). “Structure of AFeTi(PO4)3 (A = Mn, Sr) Nasicon-type phases,” Ann. Chim. (Cachan, Fr.) 31, 3138.CrossRefGoogle Scholar
Aatiq, A., Tigha, R., Hassine, R. and Saadoune, I. (2006). “Crystallochemistry and structural studies of two newly CaSb0.50Fe1.50(PO4)3 and Ca0.50SbFe(PO4)3 Nasicon phases,” Powder Diffr. 21, 4551.Google Scholar
Aatiq, A., Tigha, R. and Benmokhtar, S. (2012). “Structure, infrared and Raman spectroscopic studies of new Sr0.50SbFe(PO4)3 and SrSb0.50Fe1.50(PO4)3 Nasicon phases,” J. Mater. Sci. 47, 13541364.Google Scholar
Anantharamulu, N., Rao, K. K., Vithal, M. and Prasad, G. (2009). “Preparation, characterization, impedance and thermal expansion studies of Mn0.5MSb(PO4)3 (M=Al, Fe and Cr),” J. Alloys Compd. 479, 684691.CrossRefGoogle Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci. B41, 244247.Google Scholar
Butt, G., Sammes, N., Tompsett, G., Smirnova, A. and Yamamoto, O. (2004). “Raman spectroscopy of superionic Ti-doped Li3Fe2(PO4)3 and LiNiPO4 structures,” J. Power Sources 134, 7279.CrossRefGoogle Scholar
Delmas, C., Viala, J. C., Olazcuaga, R., Le Flem, G., Hagenmuller, P., Cherkaoui, F. and Brochu, R. (1981). “Ionic conductivity in Nasicon-type phases Na1+xZr2-xLx(PO4)3 (L = Cr, In, Yb),” Solid State Ionics 3/4, 209214.CrossRefGoogle Scholar
Hong, H. Y-P. (1976). “Crystal structures and crystal chemistry in the system Na(1+x)Zr2SixP(3-x)O12 ,” Mater. Res. Bull. 11, 173182.Google Scholar
Husson, E., Genet, F., Lachgar, A. and Piffard, Y. (1988). “The vibrational spectra of some antimony phosphates,” J. Solid State Chem. 75, 305312.Google Scholar
Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C. and Goodenoogh, J. B. (1997). “Mapping of transition metal redox energies in phosphates with Nasicon structure by lithium intercalation,” J. Electrochem. Soc. 144(8), 25812586.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1997). “Fullprof, Program for Rietveld refinement,” Laboratoire Léon Brillouin (CEA-CNRS) Saclay France.Google Scholar
Roy, R., Vance, E. R. and Alamo, J. (1982). “[NZP], A new radiophase for ceramic nuclear waste forms,” Mater. Res. Bull. 17, 585589.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect.A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751767.Google Scholar
Sudarsana, V., Muthe, K .P., Vyas, J. C. and Kulshreshtha, S. K. (2002). “PO4 tetrahedra in SbPO4 and SbOPO4 : a 31P NMR and XPS study,” J. Alloys Compd. 336, 119123.Google Scholar
Woodcock, D. A., Lightfoot, P. and Smith, R. I. (1999). “Powder neutron studies of three low thermal expansion in the NZP family: K0.5Nb0.5Ti1.5(PO4)3, BaTi2(PO4)3 and Ca0.25Sr0.25Zr2(PO4)3 ,” J. Mater. Chem. 9, 26312636.CrossRefGoogle Scholar