Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T21:47:15.816Z Has data issue: false hasContentIssue false

Synthesis and crystal structure of a palladium(II) complex with the amino acid L-citrulline

Published online by Cambridge University Press:  02 September 2015

Bruno Z. Mascaliovas
Affiliation:
Bioinorganic and Medicinal Chemistry Research Laboratory, LQBM, Institute of Chemistry, University of Campinas, UNICAMP, PO BOX 6154, 13083-970 Campinas, São Paulo, Brazil
Fernando R.G. Bergamini
Affiliation:
Bioinorganic and Medicinal Chemistry Research Laboratory, LQBM, Institute of Chemistry, University of Campinas, UNICAMP, PO BOX 6154, 13083-970 Campinas, São Paulo, Brazil
Alexandre Cuin*
Affiliation:
LQBin – Laboratório de Química BioInorgânica – Departamento de Química, Instituto de Ciências Exatas, UFJF, 36036–330 Juiz de Fora, Minas Gerais, Brazil
Pedro P. Corbi
Affiliation:
Bioinorganic and Medicinal Chemistry Research Laboratory, LQBM, Institute of Chemistry, University of Campinas, UNICAMP, PO BOX 6154, 13083-970 Campinas, São Paulo, Brazil
*
a)Author to whom correspondence should be addressed. Electronic mail: alexandre_cuin@yahoo.com

Abstract

Synthesis and structural characterization of a novel palladium Pd(II) complex with the amino acid L-citrulline (Cit, C6H13N3O3) are presented in this paper. Elemental analysis indicates a 1:2 metal/ligand molar composition for the complex, with the molecular formula PdC12H24N6O6. The compound was also characterized by infrared (IR) spectroscopic measurements and the crystal structure has been solved by powder X-ray diffraction data with simulated annealing strategy in real space. The Pd(II) complex crystallizes in the triclinic system with space group P-1 and cell parameters a = 4.6493(4) Å, b = 5.222(4) Å, c = 18.040(2) Å, α = 77.41(6)°, β = 94.72(7),° and γ = 101.45(7)°. The crystal structure confirms the presence of Pd(II) ions in a nearly square planar environment and the molecular formula with deprotonated citrulline as proposed by analytical and spectroscopic data.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbehausen, C., Sucena, S. F., Lancellotti, M., Heinrich, T. A., Abrão, E. P., Costa-Neto, C. M., Formiga, A. L. B., and Corbi, P. P. (2013). “Synthesis, spectroscopic characterization, DFT studies, and antibacterial and antitumor activities of a novel water soluble Pd(II) complex with L-alliin,” J. Mol. Struct. 1035, 421426.CrossRefGoogle Scholar
Bergamini, F. R. G., Abbehausen, C., Magalhães, A., Lustri, W. R., Gomes, A. F., Gozzo, F. C., and Corbi, P. P. (2011). “Synthesis, spectroscopic studies, and preliminary antibacterial assays of a palladium(II) complex with 2-mercaptothiazoline,” J. Coord. Chem. 64, 30923101.Google Scholar
Carvalho, M. A., Souza, B. C., Paiva, R. E. F., Bergamini, F. R. G., Gomes, A. F., Gozzo, F. C., Lustri, W. R., Formiga, A. L. B., Rigatto, G., and Corbi, P. P. (2012). “Synthesis, spectroscopic characterization, DFT studies, and initial antibacterial assays in vitro of a new palladium(II) complex with tryptophan,” J. Coord. Chem. 65, 17001711.Google Scholar
Coelho, A. (2000). “Whole-profile structure solution from powder diffraction data using simulated annealing,J. Appl. Crystallogr. 22, 899908.Google Scholar
Coelho, A. A. (2003). “Indexing of powder diffraction patterns by iterative use of singular value decomposition,” J. Appl. Crystallogr. 36, 8695.Google Scholar
Garoufis, A., Hadjikakou, S. K. and Hadjiliadis, N. (2009). “Palladium coordination compounds as anti-viral, anti-fungal, anti-microbial and anti-tumor agents,” Coord. Chem. Rev. 253, 13841397.Google Scholar
Kaore, S. N., Amane, H. S., and Kaore, N. M. (2013). “Citrulline: pharmacological perspectives and its role as an emerging biomarker in future,” Fund. Clin. Pharmacol. 27, 3550.Google Scholar
Keller, E. (1986). “SCHAKAL86,” Chem. Unserer Zeit. 20, 178181.Google Scholar
Masciocchi, N. and Sironi, A. (1997). “The contribution of powder diffraction methods to structural co-ordination chemistry,” J. Chem. Soc., Dalton Trans. 24, 46434650.Google Scholar
Pawley, G. S. (1981). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr. 14, 357361.CrossRefGoogle Scholar
Silva, S. A., Masciocchi, N., and Cuin, A. (2014). “Crystal structures of N,N′-bis(thiophen-2-ylmethyl)ethane-1,2-diaminium hydrochloride and of its [AuCl4](-) salt solved by powder diffraction,” Powder Diffrac. J. 29, 300306.CrossRefGoogle Scholar
Spek, A. L. (2009). “Structure validation in chemical crystallography,” Acta Crystallogr. D65, 148155.Google Scholar
Sridhar, B., Srinivasan, N., Dalhus, B., and Rajaram, R. K. (2002). “L-Citrullinium perchlorate,” Acta Cryst. E 58, o1177.Google Scholar
TOPAS-R (2009). Version 4.2, General Profile and Structure Analysis Software for Powder Diffraction Data (Bruker AXS, Karlsruhe, Germany).Google Scholar
Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder diffraction pattern indexing,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Young, R. A. (1981). The Rietveld Method IUCr Monograph N.5 (Oxford University Press, New York).Google Scholar
Supplementary material: File

Mascaliovas supplementary material

Mascaliovas supplementary material 1

Download Mascaliovas supplementary material(File)
File 133.4 KB