Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T07:49:45.514Z Has data issue: false hasContentIssue false

Synthesis and Rietveld refinement of the ternary skutterudite RuSb2Te

Published online by Cambridge University Press:  05 March 2012

F. Laufek*
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Praha 5, Czech Republic
J. Návrátil
Affiliation:
Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Heyrovsky sq. 2, 12006 Prague, Czech Republic
*
a)Author to whom correspondence should be addressed. Electronic mail: frantisek.laufek@geology.cz

Abstract

The RuSb2Te compound has been synthesized and structurally characterized from powder X-ray diffraction data. RuSb2Te has the skutterudite structure, Im3 symmetry, unit-cell parameter a = 9.2665(1) Å, V = 795.70(1) Å3, Z = 8, and Dc = 7.88 g/cm3. The Sb and Te atoms randomly occupy the crystallographic 24g position; no indications of ordering of Te and Sb atoms have been detected.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coelho, A. A. and Cheary, R. W. (1997). X-ray Line Profile Fitting Program, XFIT (computer software), School of Physical Sciences, University of Technology, Sydney, New South Wales, Australia.Google Scholar
Emsley, J. (1989). The Elements (Oxford University Press, Oxford).Google Scholar
Fleurial, J. P., Caillat, T., and Borshchevsky, A. (1997). “Skutterudites: An Update,” Proceedings of the 16th International Conference on Thermoelectrics, Dresden, Germany, pp. 111.CrossRefGoogle Scholar
ICDD (2010). PDF-2 2010 (Database), edited by Kabekkodu, Soorya (International Centre for Diffraction Data, Newtown Square, PA).Google Scholar
Fiz Karlsruhe and National Institute of Standards and Technology (NIST) (2010). Inorganic Crystal Structure Database (ICSD), version 2010-02, Fachinformationszentrum Karlsruhe, Germany/The National Institute of Standards and Technology (NIST), Gaithersburg, Maryland.Google Scholar
Kjekshus, A. and Rakke, T. (1974). “Compounds with the skutterudite type crystal structure III. structural data for arsenides and antimonides,” Acta Chem. Scand. A28, 99103.10.3891/acta.chem.scand.28a-0099CrossRefGoogle Scholar
Kjekshus, A., Rakke, T., and Andresen, A. F. (1977). “Compounds with the marcasite type crystal structure. XII. Structural data for RuP2, RuAs2, RuSb2, OsP2, OsAs2, OsSb2,” Acta Chem. Scand. A31, 235259.Google Scholar
Koehler, J. (1997). “Kristallstruktur der Tieftemperaturmodifikation von RuTe2,” Z. Annorg. Allg. Chem. 623, 16571660.10.1002/zaac.v623:10CrossRefGoogle Scholar
Kraus, W. and Nolze, G. (2000). Powder Cell for Windows, Version 2.4 (Computer Software), BAM, Berlin, Germany.Google Scholar
Laufek, F. and Navrátil, J. (2010). “Crystallographic study of ternary ordered skutterudite IrGe1.5Se1.5,” Powder Diffr. 25, 247252.10.1154/1.3478411CrossRefGoogle Scholar
Laufek, F., Navrátil, J., and Goliáš, V. (2008). “Synthesis and Rietveld refinement of skutterudite-related phase CoSn1.5Te1.5,” Powder Diffr. 23, 1519.10.1154/1.2825306CrossRefGoogle Scholar
Liang, Y., Schnelle, W., Oeschler, N., Budnyk, S., and Grin, Y. (2011). “Synthesis, crystal structure, electrical and transport properties of the skutterudite derivative RhGe1.5-xSe1.5+x,” Z. Kristallogr. 226, 6267.10.1524/zkri.2011.1334CrossRefGoogle Scholar
National Institute for Materials Sciences (NIMS) (2011). Linus Pauling File (Database), edited by Villars, P., National Institute for Materials Sciences (NIMS), Tsukuba, Japan. [https://crystdb.nims.go.jp].Google Scholar
Mitchell, R. H. (2002). Perovskites: Modern and Ancient (Almaz Press, Thunder Bay, Ontario).Google Scholar
O’Keefe, M. and Hyde, B. G. (1977). “Some structures topologically related to cubic perovskite (E21), ReO3 (D09) and Cu3Au (L12),” Acta Crystallogr., Sect. B: Struct. Sci. 33, 38023813.10.1107/S0567740877012114CrossRefGoogle Scholar
Partik, M. and Lutz, H. D. (1999). “Semiempirical band structure calculations on skutterudite-type compounds,” Phys. Chem. Miner. 27, 4146.10.1007/s002690050238CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1990). “FullProf: A program for Rietveld refinement and pattern matching analysis,” Satellite Meeting on Powder diffraction of the XV Congress of the IUCr, Tolouse, France, p. 127.Google Scholar
Spek, A. L. (1988). “Lepage—An MS–DOS program for the determination of the metrical symmetry of a translation lattice,” J. Appl. Crystallogr. 21, 578579.10.1107/S002188988800490XCrossRefGoogle Scholar
Spek, A. L. (2003). “Single-crystal structure validation with the program Platon,” J. Appl. Crystallogr. 36, 713.10.1107/S0021889802022112CrossRefGoogle Scholar
Uher, C. (2003). “Structure-Property Relations in Skutterudites,” in Chemistry, Physics and Materials Science of Thermoelectric Materials: Beyond Bismuth telluride, edited by Kanatzidis, M. G., Mahanti, S. D., and Hogan, T. P. (Plenum, New York), pp. 121147.CrossRefGoogle Scholar
Vaqueiro, P., Sobany, G. G., Powell, A. V., and Knight, K. S. (2006). “Structure and thermoelectric properties of the ordered skutterudite CoGe1.5Te1.5,” J. Solid. State. Chem. 179, 20472053.10.1016/j.jssc.2006.04.004CrossRefGoogle Scholar
Vaqueiro, P., Sobany, G. G., and Stindl, M. (2008). “Structure and electrical transport properties of the ordered skutterudites MGe1.5S1.5 (M = Co, Rh, Ir),” J. Solid State Chem. 181, 768776.10.1016/j.jssc.2008.01.025CrossRefGoogle Scholar
Vaqueiro, P., Sobany, G. G., and Powel, A. V. (2010). “A synchrotron powder X-ray diffraction study of the skutterudite related phases AB1.5Te1.5 (A = Co, Rh, Ir; B = Ge, Sn),” Dalton Trans. 39, 10201026.10.1039/b913578bCrossRefGoogle ScholarPubMed