Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T13:57:00.706Z Has data issue: false hasContentIssue false

Synthesis and X-ray diffraction crystallographic characterization of compound 2-(α-naphtyl)-3-(α-pyridinyl)-1,3-thiazolidin-4-one

Published online by Cambridge University Press:  18 June 2018

J. L. Pinto*
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia Laboratorio de Química Orgánica y Biomolecular (LQOBio), Centro de Investigación en Biomoléculas (CIBIMOL), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
J. A. Henao
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
V. Kouznetsov
Affiliation:
Laboratorio de Química Orgánica y Biomolecular (LQOBio), Centro de Investigación en Biomoléculas (CIBIMOL), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
*
a)Author to whom correspondence should be addressed. Electronic mail: jolpinto@uis.edu.co

Abstract

Thiazolidinones present a wide range of useful applications especially in the biological aspect. Based on these facts, the compound of interest 2-(α-naphthyl)-3-(α-pyridinyl)-1,3-thiazolidine-4-one (C18H14N2OS), was synthesized via multi-component reaction with the aim of obtaining a compound that would show activity against fungi and bacteria. The synthesis of 2-(α-naphthyl)-3-(α-pyridinyl)-1,3-thiazolidine-4-one, was carried out from the respective α-aminopyridine with α-naphthylaldehyde and α-mercaptoacetic acid, under reflux in dry toluene for 8 h, obtaining a solid compound. Molecular characterization of the compound was carried out by infrared spectrometry, mass spectrometry, and nuclear magnetic resonance. The study of the crystallization and the calculation of the unit-cell constants were determined by the technique of X-ray diffraction of polycrystalline samples. It was determined that the compound crystallizes in a monoclinic system with space group P21/c [No. 14] and the constants of the unit cell a = 11.958 (3), b = 9.675 (4), c = 12.661 (4) Å, β = 96.960° (2), V = 1454.01 (Å3).

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boultif, A. and Louër, D. (2006). “Indexing of powder diffraction patterns of low symmetry lattices by successive dichotomy method,” J. Appl. Crystallogr. 37, 724731.Google Scholar
Brown, F. C. (1961). “4-Thiazolidinones,” Chem. Rev. 61, 463521.Google Scholar
Buhrke, V., Jenkins, R., and Smith, D. (1998). Preparation of Specimens for X-ray Fluorescence and X-ray Diffraction Analysis (Wiley, New York), pp. 141142.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.Google Scholar
Dong, C. (1999). “POWDERX: windows95 based program for powder X-ray diffraction data processing,” J. Appl. Crystallogr. 32, 833838.Google Scholar
Kouznetsov, V., Amado, D., Bahsas, A., and Amaro, J. (2006). “Synthesis and spectral data of new 1,2-bis-(2-hetaryl-4-oxothiazolidin-3-yl) ethanes and 1,4-bis-(2-hetaryl-4-oxothiazolidin-3-yl) butanes,” J. Heterocyclic Chem. 43, 447552.Google Scholar
Laugier, J. and Bochu, B. (2002). CHEKCELL. “LMGP-Suite Suite of Programs for the interpretation of X-ray. Experiments,” ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. http://www.inpg.fr/LMGP and http://www.ccp14.ac.uk/tutorial/lmgp/.Google Scholar
Miguell, A. D., HubbardC, R. C, R., and Stalick, J. K. (1981). “NBS* AIDS83: A FORTRAN program for crystallographic data evaluation,” National Bureau of Standards (USA), Tech. Note 1141.Google Scholar
Pȃnzariu, A. T., Apotrosoaei, M., Vasicu, I. M., Drăgan, M., Constantin, S., Buron, F., Routier, S., Profire, L., and Tuchilus, C. (2016). “Synthesis and biological evaluation of new 1,3-thiazolidine-4-one derivates of nitro-L-aginine methyl ester,” Chem. Cent. J., 10, 6.Google Scholar
Rachinger, W. A. (1948). “A correction for the α 1 α 2 doublet in the measurement of widths of X-ray diffraction lines,” J. Sci. Instrum. 25, 254255.Google Scholar
Savitzky, A. and Golay, M. J. (1964) “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 16271639.Google Scholar
Singh, T. (2014). “Synthesis and evaluation of thiazolidine-4-one for their antibacterial activity,” J. Pharm. Sci. Biosci. Res. 4, 110113.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.Google Scholar
Sonneveld, E. J. and Visser, J. W. (1975). “Automatic collection of powder diffraction data from photographs,” J. Appl. Crystallogr. 8, 17.Google Scholar
Supplementary material: File

Pinto et al. supplementary material

Pinto et al. supplementary material 1

Download Pinto et al. supplementary material(File)
File 45.2 KB