Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T08:19:11.219Z Has data issue: false hasContentIssue false

Synthesis and X-ray powder diffraction data of Ba2.64Ta11.25O30.81

Published online by Cambridge University Press:  15 October 2014

A. A. Babaryk*
Affiliation:
Inorganic Chemistry Department, Faculty of Chemistry, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
I. V. Odynets
Affiliation:
Inorganic Chemistry Department, Faculty of Chemistry, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
S. Khainakov
Affiliation:
Departamento de Química Orgánica e Inorganica, Universidad de Oviedo, Julián Claverıía 8, 33006 Oviedo, Spain
N. S. Slobodyanik
Affiliation:
Inorganic Chemistry Department, Faculty of Chemistry, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
*
a) Author to whom correspondence should be addressed. Electronic mail: babaryk@univ.kiev.ua

Abstract

The Ba2.64Ta11.25O30.81was prepared by conventional solid-state reaction technique as a single phase. It was found that the compound crystallizes in the tetragonal system, space group P4/mbm (No. 127) and unit-cell parameters are a = 12.508 59(8) Å, c = 3.912 81(2) Å, V = 612.218(7) Å3, and Z = 1. The crystal structure of the Ba2.64Ta11.25O30.81 phase is found to be closely related to the tetragonal tungsten bronze structure type, comprising interstitial (TaO)+ inclusions. Reference data were derived from the Rietveld analysis and reported here.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, S. (1965). “The crystal structure of NaNb6O15 and NaNb6O15OH,” Acta Chem. Scand. 19, 22852290.CrossRefGoogle Scholar
Awadalla, A. A. and Gatehouse, B. M. (1978). “Crystal structures of some niobium and tantalum oxides. III. K6Ta10.8O30 – a partially “filled” tetragonal tungsten bronze-like structure,” J. Solid State Chem. 23, 349355.CrossRefGoogle Scholar
Chi, E. O., Gandini, A., Ok, K. M., Zhang, L. and Halasyamani, P. S. (2004). “Syntheses, structures, second-harmonic generating, and ferroelectric properties of tungsten bronzes: A 6 M 2 M' 8O30 (A = Sr2+, Ba2+, or Pb2+; M = Ti4+, Zr4+, or Hf4+; M' = Nb5+ or Ta5+),” Chem. Mater. 16, 36163622.CrossRefGoogle Scholar
Elaatmani, M., Zegzouti, A., Capitelli, F., Moliterni, A. G. G., Migliori, A. and Calestani, G. (2003). “Synthesis, X-ray crystal structure and dielectric measurements of a tetragonal tungsten bronze: Pb0.75K1.80Li1.70Nb5O15 ,” Z. Kristallogr. 218, 2631.CrossRefGoogle Scholar
Hyde, B. G. and O'Keeffe, M. (1973). “Relations between the DO9(ReO3) structure type and some ‘bronze’ and ‘tunnel’ structures,” Acta Crystallogr. A29, 243248.CrossRefGoogle Scholar
Kirkland, A. I. and Saxton, W. O. (2002). “Cation segregation in Nb16W18O94 using high angle annular dark field scanning transmission electron microscopy and image processing,” J. Microsc. 206, 16.CrossRefGoogle ScholarPubMed
Krumeich, F. (1998). “Order and disorder in niobium tungsten oxides of the tetragonal tungsten bronze type,” Acta Crystallogr. B54, 240249.CrossRefGoogle Scholar
Kuang, X., Pan, F., Cao, J., Liang, C., Suchomel, M. R., Porcher, F., and Allix, M. (2013). “Defect structure, phase separation, and electrical properties of nonstoichiometric tetragonal tungsten bronze Ba0.5-x TaO3-x ”, Inorg. Chem. 52, 1324413252.CrossRefGoogle Scholar
Kumada, N. and Kinomura, N. (1997). “Preparation and crystal structure of K6Nb10.9O30 ,” Eur. J. Solid State Inorg. Chem. 34, 6572.Google Scholar
Ohsato, H. (2001). “Science of tungstenbronze-type like Ba6–3 xR 8+2 xTi18O54 (R = rare earth) microwave dielectric solid solutions,” J. Eur. Ceram. Soc. 21, 27032711.CrossRefGoogle Scholar
Ramam, K. and Chandramouli, K. (2012). “Ferroelectric and pyroelectric properties of Ce3+ modified tetragonal tungsten bronze structured lead barium niobate-55 ceramics,” J. Phys. Chem. Solids 73, 10611065.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990). “FullProf: a program for ietveld refinement and pattern matching analysis,” in Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides,” Acta Crystallogr. A32, 751767.CrossRefGoogle Scholar
Sleight, A. W. (1966). “The crystal structure of Nb16W18O94, a member of a (MeO) x MeO3 family of compounds,” Acta Chem. Scand. 20, 11021112.CrossRefGoogle Scholar
Stennett, M. C., Miles, G. C., Sharman, J., Reaney, I. M., and West, A. R. (2005). “A new family of ferroelectric tetragonal tungsten bronze phases, Ba2 MTi2 X 3O15 ,” J. Eur. Ceram. Soc. 25, 24712475.CrossRefGoogle Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction”, J. Appl. Crystallogr., 32, 281289.CrossRefGoogle Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. 20, 7983.CrossRefGoogle Scholar
Wang, L., Sakka, Y., Rusakov, D. A., Mozharivskyj, Y., and Kolodiazhnyi, T. (2011). “Novel incipient ferroelectrics based on Ba4 MNb x Ta10-x O30 where M = Zn, Mg, Co, Ni,” Chem. Mater. 23, 25862594.CrossRefGoogle Scholar
Wong-Ng, W., Liu, G., Yan, Y. G., and Kaduk, J. A. (2013). “Structure and X-ray reference diffraction patterns of (Ba6-x Sr x )R 2Co4O15 (x = 1, 2) (R = lanthanides)”, Powder Diffr. 28, 212221.CrossRefGoogle Scholar
Yao, Y. B., Mak, C. L., and Ploss, B. (2012). “Phase transitions and electrical characterizations of (K0.5Na0.5)2x (Sr0.6Ba0.4)5−x Nb10O30 (KNSBN) ceramics with ‘unfilled’ and ‘filled’ tetragonal tungsten-bronze (TTB) crystal structure,” J. Eur. Ceram. Soc. 32, 43534361.CrossRefGoogle Scholar