Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T00:02:27.468Z Has data issue: false hasContentIssue false

Temperature-dependent structure of an intermetallic ErPd2Si2 single crystal: a combined synchrotron and in-house X-ray diffraction study

Published online by Cambridge University Press:  28 April 2022

Kaitong Sun
Affiliation:
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, No. 1. Zhongziyuan Road, Dalang, Dongguan 523803, China
Yinghao Zhu
Affiliation:
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, No. 1. Zhongziyuan Road, Dalang, Dongguan 523803, China
Si Wu
Affiliation:
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, No. 1. Zhongziyuan Road, Dalang, Dongguan 523803, China
Junchao Xia
Affiliation:
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China
Pengfei Zhou
Affiliation:
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China
Qian Zhao
Affiliation:
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China
Chongde Cao*
Affiliation:
Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Hai-Feng Li*
Affiliation:
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China
*
a)Author to whom correspondence should be addressed. Electronic mail: haifengli@um.edu.mo (H.-F. L.); caocd@nwpu.edu.cn (C. C.)
a)Author to whom correspondence should be addressed. Electronic mail: haifengli@um.edu.mo (H.-F. L.); caocd@nwpu.edu.cn (C. C.)

Abstract

We have grown intermetallic ErPd2Si2 single crystals employing laser diodes with the floating-zone method. The temperature dependence of the unit-cell parameters was determined using synchrotron and in-house X-ray powder diffraction measurements from 20 to 500 K. The diffraction patterns fit well with the tetragonal I4/mmm space group (No. 139) with two chemical formulae within the unit cell. The synchrotron powder diffraction study shows that the refined unit-cell parameters are a = 4.10320(2) Å, c = 9.88393(5) Å at 298 K and a = 4.11737(2) Å, c = 9.88143(5) Å at 500 K, resulting in the unit-cell volume V = 166.408(1) Å3 (298 K) and 167.517(2) Å3 (500 K). In the whole studied temperature range, no structural phase transition was observed. Upon cooling, the unit-cell parameters a and c are shortened and elongated, respectively.

Type
Technical Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally.

References

Bażela, W., Leciejewicz, J., Szytuła, A., and Zygmunt, A. (1991). “Magnetism of DyPd2Si2 and ErPd2Si2,” J. Magn. Magn. Mater. 96(1), 114120.CrossRefGoogle Scholar
Bażela, W., Baran, S., Leciejewicz, J., Szytuła, A., and Ding, Y. (1997). “Magnetic structures of TbPd2Si2 and TbPd2Ge2—a redetermination,” J. Phys.: Condens. Matter 9(10), 22672273.Google Scholar
Cao, C. D., Klingeler, R., Leps, N., Vinzelberg, H., Kataev, V., Muranyi, F., Tristan, N., Teresiak, A., Zhou, S., Löser, W., Behr, G., and Büchner, B. (2008). “Interplay between kondo-like behavior and short-range antiferromagnetism in EuCu2Si2 single crystals,” Phys. Rev. B 78(6), 064409.CrossRefGoogle Scholar
Cao, C. D., Klingeler, R., Leps, N., Behr, G., and Löser, W. (2014). “Single crystal growth of the ErPd2Si2 intermetallic compound,” J. Cryst. Growth 401, 601604.CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Frontzek, M. D. (2009). Magnetic Properties of R2PdSi3 (R = Heavy Rare Earth) Compounds (Cuvillier Verlag, Göttingen).Google Scholar
Li, H., Tian, W., Zarestky, J. L., Kreyssig, A., Ni, N., Bud'ko, S. L., Canfield, P. C., Goldman, A. I., McQueeney, R. J., and Vaknin, D. (2009). “Magnetic and lattice coupling in single-crystal SrFe2As2: a neutron scattering study,” Phys. Rev. B 80(5), 054407.CrossRefGoogle Scholar
Li, H.-F., Broholm, C., Vaknin, D., Fernandes, R. M., Abernathy, D. L., Stone, M. B., Pratt, D. K., Tian, W., Qiu, Y., Ni, N., Diallo, S. O., Zarestky, J. L., Bud'ko, S. L., Canfield, P. C., and McQueeney, R. J. (2010). “Anisotropic and quasipropagating spin excitations in superconducting Ba(Fe0.926Co0.074)2As2,” Phys. Rev. B 82, 140503(R).CrossRefGoogle Scholar
Li, H.-F., Wildes, A., Hou, B., Zhang, C., Schmitz, B., Meuffels, P., Roth, G., and Bückel, T. (2014). “Magnetization, crystal structure and anisotropic thermal expansion of single-crystal SrEr2O4,” RSC Adv. 4(96), 5360253607.CrossRefGoogle Scholar
Li, H.-F., Cao, C., Wildes, A., Schmidt, W., Schmalzl, K., Hou, B., Regnault, L.-P., Zhang, C., Meuffels, P., Löser, W., and Roth, G. (2015). “Distinct itinerant spin-density waves and local-moment antiferromagnetism in an intermetallic ErPd2Si2 single crystal,” Sci. Rep. 5(1), 7968.CrossRefGoogle Scholar
Li, H.-F., Zhu, Y. H., Wu, S., and Tang, Z. K. (2021). “A method of centimeter-sized single crystal growth of chromate compounds and related storage device,” China Patent CN110904497B (China National Intellectual Property Administration, Beijing, China).Google Scholar
Mazilu, I., Teresiak, A., Werner, J., Behr, G., Cao, C. D., Löser, W., Eckert, J., and Schultz, L. (2008). “Phase diagram studies on Er2PdSi3 and ErPd2Si2 intermetallic compounds,” J. Alloys Compd. 454(1), 221227.CrossRefGoogle Scholar
Prokofiev, A. (2018). “Floating zone growth of intermetallic compounds,” in Crystal Growth of Intermetallics, edited by Gille, P. and Grin, Y. (De Gruyter, Berlin, Boston), pp. 91116.CrossRefGoogle Scholar
RodrÍguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Phys. B: Condens. Matter 192(1), 5569.CrossRefGoogle Scholar
Rotter, M., Tegel, M., and Johrendt, D. (2008). “Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2,” Phys. Rev. Lett. 101(10), 107006.CrossRefGoogle ScholarPubMed
Sampathkumaran, E. V., Frank, K. H., Kalkowski, G., Kaindl, G., Domke, M., and Wortmann, G. (1984). “Valence instability in YbPd2Si2: magnetic susceptibility, X-ray absorption, and photoemission studies,” Phys. Rev. B 29(10), 57025707.CrossRefGoogle Scholar
Sampathkumaran, E. V., Mohapatra, N., Iyer, K. K., Cao, C. D., Löser, W., and Behr, G. (2008). “Magnetic anomalies in single crystalline ErPd2Si2,” J. Magn. Magn. Mater. 320(8), 15491552.CrossRefGoogle Scholar
Sasmal, K., Lv, B., Lorenz, B., Guloy, A. M., Chen, F., Xue, Y.-Y., and Chu, C.-W. (2008). “Superconducting Fe-based compounds (A 1−xSrx)Fe2As2 with A = K and Cs with transition temperatures up to 37 K,” Phys. Rev. Lett. 101(10), 107007.CrossRefGoogle Scholar
Sefat, A. S., Jin, R., McGuire, M. A., Sales, B. C., Singh, D. J., and Mandrus, D. (2008). “Superconductivity at 22 K in Co-doped BaFe2As2 crystals,” Phys. Rev. Lett. 101(11), 117004.CrossRefGoogle ScholarPubMed
Shatruk, M. (2019). “ThCr2Si2 structure type: the “perovskite” of intermetallics,” J. Solid State Chem. 272, 198209.CrossRefGoogle Scholar
Smith, G. S., and Snyder, R. L. (1979). “FN: a criterion for rating powder diffraction pattern and evaluating the reliability of powder indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Stewart, G. R. (2001). “Non-Fermi-liquid behavior in d- and f-electron metals,” Rev. Mod. Phys. 73(4), 797855.CrossRefGoogle Scholar
Szytuła, A., Jaworska-Gołab, T., Baran, S., Penc, B., Leciejewicz, J., Hofmann, M., and Zygmunt, A. (2001). “Magnetic structure of HoPd2Si2 redefined on the basis of new neutron diffraction data,” J. Phys.: Condens. Matter 13(35), 80078014.Google Scholar
Tang, C. C., Thompson, S. P., Hill, T. P., Wilkin, G. R., and Wagner, U. H. (2015). “Design of powder diffraction beamline (BL-I11) at diamond,” in Tenth European Powder Diffraction Conference: Geneva, September 1–4, 2006, edited by Deutsche Gesellschaft für Kristallographie (Oldenbourg Wissenschaftsverlag, München), pp. 153158.Google Scholar
Thompson, S. P., Parker, J. E., Potter, J., Hill, T. P., Birt, A., Cobb, T. M., Yuan, F., and Tang, C. C. (2009). “Beamline I11 at diamond: a new instrument for high resolution powder diffraction,” Rev. Sci. Instrum. 80(7), 075107.CrossRefGoogle ScholarPubMed
Tomala, K., Sánchez, J., Malaman, B., Venturini, G., Blaise, A., Kmif, R., and Ressouche, E. (1994). “Magnetic properties of ErPd2Si2 from magnetization mössbauer and neutron diffraction measurements,” J. Magn. Magn. Mater. 131, 345355.CrossRefGoogle Scholar
Torikachvili, M. S., Bud'ko, S. L., Ni, N., and Canfield, P. C. (2008). “Pressure induced superconductivity in CaFe2As2,” Phys. Rev. Lett. 101(5), 057006.CrossRefGoogle ScholarPubMed
Uchima, K., Uwatoko, Y., and Shigeoka, T. (2018). “Magnetic characteristics of RPd2si2 (R = Rare earth),” AIP Adv. 8(10), 101425.CrossRefGoogle Scholar
Wu, S., Zhu, Y., Gao, H., Xiao, Y., Xia, J., Zhou, P., Ouyang, D., Li, Z., Chen, Z., Tang, Z., and Li, H.-F. (2020). “Super-necking crystal growth and structural and magnetic properties of SrTb2O4 single crystals,” ACS Omega 5(27), 1658416594.CrossRefGoogle ScholarPubMed
Xu, Y.-K., Liu, L., Wolfgang, L., and Ge, B.-M. (2011). “Precipitates identification in R 2PdSi3 (R = Pr, Tb and Gd) single crystal growth,” Trans. Nonferrous Met. Soc. China 21(11), 24212425.CrossRefGoogle Scholar
Yakinthos, J. K., and Gamari-Seale, H. (1982). “Magnetic properties of some RPd2Si2 compounds (R = Gd, Tb, Dy, Ho and Er),” Eur. Phys. J. B 48(3), 251254.Google Scholar