Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T08:47:33.890Z Has data issue: false hasContentIssue false

Thermal atomic displacement parameters of SrO

Published online by Cambridge University Press:  05 March 2012

J. Bashir
Affiliation:
Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad, Pakistan
Rao Tahir A. Khan
Affiliation:
Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad, Pakistan
N. M. Butt
Affiliation:
Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad, Pakistan
G. Heger
Affiliation:
Laboratoire Leon Brillouin, CE Saclay, 9119 Gif-sur-Yvette, France

Abstract

The atomic displacement parameters of individual ions in SrO have been determined from the Rietveld analysis of high-resolution powder neutron diffraction data. As the neutron velocity is smaller than the sound velocity in SrO, the intensity data was not corrected for the effect of thermal diffuse scattering. The room temperature value of overall isotropic thermal displacement parameters was B=0.57(2) Å2; which corresponds to Debye temperature, Θ of 242(4) K. The results are compared with experimental and theoretical estimates.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adair, R., et al. (1989). “Nonlinear Refractive Index of Optical Crystals,” Phys. Rev. B PRBMDO 39, 33373341. prb, PRBMDO CrossRefGoogle Scholar
Cagliotti, G., et al. (1958). “Choice of Collimators for a Crystal Spectrometer for Neutron Diffraction,” Nucl. Instrum. NUINAO 3, 223228. nun, NUINAO CrossRefGoogle Scholar
Dollase, W. A. (1986). “Correction of Intensities for Preferred Orientation in Powder Diffractrometry: Application of the March Model,” J. Appl. Crystallogr. JACGAR 19, 267272. acr, JACGAR CrossRefGoogle Scholar
Galtier, M.and Montaner, A. (1975). “Proprietes Thermodynamiques et Optiques des Oxydes Alcalino-Terreux,” Phys. Status Solidi B PSSBBD 70, 163172. psb, PSSBBD CrossRefGoogle Scholar
Gao, H. X.and Peng, L.-M. (2000). “Debye–Waller Factors of Compounds with the Caesium Chloride Structure,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ A56, 519524. acf, ACACEQ CrossRefGoogle Scholar
Howard, C. J. and Hill, R. J. (1986). “A Computer Program for Rietveld Analysis of X-ray and Neutron Diffraction Patterns,” Australian Atomic Energy Commission Report No. M112. ANSTO, Lucas Heights Research Laboratories, NSW, Australia.Google Scholar
Howard, C. J. (1982). “The Approximation of Asymmetric Neutron Powder Diffraction Peaks by Sums of Gaussions,” J. Appl. Crystallogr. JACGAR 15, 615620. acr, JACGAR CrossRefGoogle Scholar
Kushwaha, M. S. (1982). “Lattice Dynamics of Alkaline-Earth Oxides,” J. Chem. Phys. JCPSA6 77, 56935698. jcp, JCPSA6 CrossRefGoogle Scholar
March, A. (1932). “Mathematical Theory of Regularity According to Grain Form for Affine Deformation,” Z. Kristallogr. ZEKRDZ 81, 285297. zek, ZEKRDZ CrossRefGoogle Scholar
Reardon, B. J. and Hubbard, C. R. (1992). “A Comprehensive Review of the XRD Data of the Primary and Secondary Phases Present in BSCCO Superconductor System: Part 1, Ca-Sr-Cu Oxides,” Oak Ridge National Laboratories (ORNL), Report No. Tm-11948.Google Scholar
Rietveld, H. M. (1969). “A Profile Refinement Method for Nuclear and Magnetic Structures,” J. Appl. Crystallogr. JACGAR 2, 6571. acr, JACGAR CrossRefGoogle Scholar
Rieder, K. H., et al. (1973). “Measurement and Comparative Analysis of the Second Order Raman Spectra of the Alkaline-Earth Oxides with NaCl Structure,” Phys. Rev. B PLRBAQ 8, 47804786. prq, PLRBAQ CrossRefGoogle Scholar
Schütt, O., et al. (1994). “Ab initio Lattice Dynamics and Charge Fluctuations in Alkaline-Earth Oxides,” Phys. Rev. B PRBMDO 50, 37463753. prb, PRBMDO CrossRefGoogle ScholarPubMed
Sears, V. F.and Shelley, S. A. (1991). “Debye–Waller Factor for Elemental Crystals,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ A47, 441446. acf, ACACEQ CrossRefGoogle Scholar
Vidal-Valat, G., et al. (1978). “X-ray Study of the Atomic Charge Densities in MgO, CaO, SrO and BaO,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACBN A34, 594602. aca, ACACBN CrossRefGoogle Scholar
Wiles, D. B.and Young, R. A. (1981). “A New Computer Program for Rietveld Analysis of X-ray Powder Diffractions Patterns,” J. Appl. Crystallogr. JACGAR 14, 149151. acr, JACGAR CrossRefGoogle Scholar
Willis, B. T. M. (1969). “Lattice Vibrations and the Accurate Determination of Structure Factors for Elastic Scattering of X-rays and Neutrons,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACBN A25, 277300. aca, ACACBN CrossRefGoogle Scholar