Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T00:30:47.926Z Has data issue: false hasContentIssue false

What you see and what you get: combining near-infrared spectroscopy with powder diffraction

Published online by Cambridge University Press:  24 August 2017

Helen E. Maynard-Casely*
Affiliation:
Australian Nuclear Science and Technology Organisation, Kirrawee DC, 2232, Australia
Norman Booth
Affiliation:
Australian Nuclear Science and Technology Organisation, Kirrawee DC, 2232, Australia
Leo Anderberg
Affiliation:
University of Newcastle, Callaghan, 2308, Australia
Helen E.A. Brand
Affiliation:
Australian Synchrotron, 800 Blackburn Road, Clayton 3168, Australia
Daniel V. Cotton
Affiliation:
School of Physics, UNSW Australia, Sydney 2052, Australia Australian Centre for Astrobiology, UNSW Australia, Sydney 2052, Australia
*
a)Author to whom correspondence should be addressed. Electronic mail: helen.maynard-casely@ansto.gov.au

Abstract

Knowledge of the surface composition of planetary bodies comes from a number of sources; such as landers, remote sensing and meteorites. However, the bulk mapping of the composition of planetary surfaces has been undertaken by analysis of reflected sunlight and these data—principally collected in the near-infra-red (IR) region—are notoriously broad and ambiguous. Hence, if laboratory spectra could be tied to physical properties measurements, such as diffraction, this would substantially aid our understanding of processes occurring in these extra-terrestrial environments. This contribution presents the capability of collecting near-IR data at the same time as neutron and synchrotron X-ray diffraction in a range of conditions (low temperature, vacuum, and humidity variations) and highlights two examples where this capability could enhance our understanding of planetary surfaces.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, J., Simpson, A., and Crisp, D. (2007). “Correcting infrared spectra for atmospheric transmission,” Publ. Astron. Soc. Pacific 119(852), 228.Google Scholar
Bibring, J.-P., Soufflot, A., Berthé, M., Langevin, Y., Gondet, B., Drossart, P., Bouyé, M., Combes, M., Puget, P., and Semery, A. (2004). “OMEGA: observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité,” Mars Express: Sci. Payload 1240, 3749.Google Scholar
Bish, D. L. (1993). “Rietveld refinement of the kaolinite structure at 1.5 K,” Clays Clay Miner. 41(6), 738744.Google Scholar
Bish, D. L., Blake, D., Vaniman, D., Chipera, S., Morris, R., Ming, D., Treiman, A., Sarrazin, P., Morrison, S., and Downs, R. T. (2013). “X-ray diffraction results from Mars Science Laboratory: mineralogy of rocknest at gale crater,” Science 341(6153), 1238932.Google Scholar
Blake, D., Vaniman, D., Achilles, C., Anderson, R., Bish, D., Bristow, T., Chen, C., Chipera, S., Crisp, J., and Des Marais, D. (2012). “Characterization and calibration of the CheMin mineralogical instrument on Mars Science Laboratory,” Space Sci. Rev. 170(1–4), 341399.Google Scholar
Brochier, D. (1977). ILL Technical Report 77/74. Institut Laue-Langevin Technical Report.Google Scholar
Brown, R. H., Baines, K. H., Bellucci, G., Bibring, J.-P., Buratti, B. J., Capaccioni, F., Cerroni, P., Clark, R. N., Coradini, A., Cruikshank, D. P., Drossart, P., Formisano, V., Jaumann, R., Langevin, Y., Matson, D. L., McCord, T. B., Mennella, V., Miller, E., Nelson, R. M., Nicholson, P. D., Sicardy, B., and Sotin, C. (2004). “The Cassini visual and infrared mapping spectrometer (VIMS) investigation”, Space Sci. Rev. 15(1) 111168.Google Scholar
Carlson, R., Weissman, P., Smythe, W., and Mahoney, J. (1992). “Near-infrared mapping spectrometer experiment on Galileo,” Space Sci. Rev. 60(1–4), 457502.Google Scholar
Carlson, R. W., Johnson, R. E., and Anderson, M. S. (1999). “Sulfuric acid on Europa and the radiolytic sulfur cycle,” Science 286(5437), 9799.Google Scholar
Coelho, A. (2008). TOPAS 4.1. In B. AXS, Ed. Bruker AXS.Google Scholar
Cosier, J., and Glazer, A. M. (1986). “A nitrogen-gas-stream cryostat for general X-ray diffraction studies,” J. Appl. Crystallogr. 19(2), 105107.CrossRefGoogle Scholar
Cotton, D. V., Bailey, J., and Kedziora-Chudczer, L. (2014). “Atmospheric modelling for the removal of telluric features from infrared planetary spectra,” Mon. Not. R. Astron. Soc. 439(1), 387399.Google Scholar
De Sanctis, M., Ammannito, E., Raponi, A., Marchi, S., McCord, T. B., McSween, H., Capaccioni, F., Capria, M., Carrozzo, F., and Ciarniello, M. (2015). “Ammoniated phyllosilicates with a likely outer solar system origin on (1) Ceres,” Nature 528(7581), 241244.Google Scholar
Eisenhauer, F., Abuter, R., Bickert, K., Biancat-Marchet, F., Bonnet, H., Brynnel, J., Conzelmann, R. D., Delabre, B., Donaldson, R., and Farinato, J. (2003). “SINFONI-integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT,” in Instrument Design and Performance for Optical/Infrared Ground-Based Telescopes, edited by Iye, M. and Moorwood, A. F. M., Proc. of SPIE, Vol. 4841, pp. 15481561.Google Scholar
Fortes, A. D., Knight, K. S., and Wood, I. G. (2017). “Structure, thermal expansion and incompressibility of MgSO4. 9H2O, its relationship to meridianiite (MgSO4. 11H2O) and possible natural occurrences,” Acta Crystallogr. B: Struct. Sci. Crystal Eng. Mater. 73(1), 4764.Google Scholar
Kargel, J. S. (1991). “Brine volcanism and the interior structures of asteroids and icy satellites,” Icarus 94(2), 368390.Google Scholar
Ligier, N., Poulet, F., Carter, J., Brunetto, R., and Gourgeot, F. (2016). “VLT/SINFONI observations of Europa: new insights into the surface composition,” Astron. J. 151(6), 163.CrossRefGoogle Scholar
Maynard-Casely, H. E., Wallwork, K. S., and Avdeev, M. (2013). “A new material for the icy Galilean moons: the structure of sulfuric acid hexahydrate,” J. Geophys. Res.: Planet. 118(9), 18951902.Google Scholar
McGregor, P. J., Hart, J., Conroy, P. G., Pfitzner, M. L., Bloxham, G. J., Jones, D. J., Downing, M. D., Dawson, M., Young, P., and Jarnyk, M. (2003). “Gemini near-infrared integral field spectograph (NIFS),” in Instrument Design and Performance for Optical/Infrared Ground-Based Telescopes, edited by Iye, M. and Moorwood, A. F. M., Proc. of SPIE, Vol. 4841, pp. 15811591.Google Scholar
Pawley, G. (1981). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr. 14(6), 357361.Google Scholar
Peterson, R., Nelson, W., Madu, B., and Shurvell, H. (2007). “Letter: Meridianiite: a new mineral species observed on Earth and predicted to exist on Mars,” Am. Mineral. 92(10), 17561759.Google Scholar
Petit, S., Madejová, J., Decarreau, A., and Martin, F. (1999). “Characterization of octahedral substitutions in kaolinites using near infrared spectroscopy,” Clays Clay Miner. 47(1), 103108.CrossRefGoogle Scholar
Poulet, F., Bibring, J.-P., Mustard, J., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R., Gondet, B., Gomez, C., and Berthé, M. (2005). “Phyllosilicates on Mars and implications for early Martian climate,” Nature 438(7068), 623627.Google Scholar
Real, J. A., Gaspar, A. B., and Munoz, M. C. (2005). “Thermal, pressure and light switchable spin-crossover materials,” Dalton Trans. (12), 20622079.Google Scholar
Roush, T. L. and Singer, R. B. (1987). “Possible temperature variation effects on the interpretation of spatially resolved reflectance observations of asteroid surfaces,” Icarus 69(3), 571574.Google Scholar
Schorghofer, N. (2008). “The lifetime of ice on main belt asteroids,” Astrophys. J. 682(1), 697.Google Scholar
Studer, A. J., Hagen, M. E., and Noakes, T. J. (2006). “Wombat: the high-intensity powder diffractometer at the OPAL reactor,” Phys. B: Condens. Matter 385–386(2), 10131015.Google Scholar
Wallwork, K. S., Kennedy, B. J., Wang, D., Choi, J.-Y., and Rah, S. (2007). “The high resolution powder diffraction beamline for the Australian Synchrotron,” in AIP Conf. Proc. (AIP) (Melbourne, Australia),Vol. 879, pp. 879–882.Google Scholar