Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T21:10:14.935Z Has data issue: false hasContentIssue false

X-ray powder diffraction data for the identification of boracite-group minerals

Published online by Cambridge University Press:  10 January 2013

Peter C. Burns
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, England

Abstract

An X-ray powder-diffraction pattern for boracite, Mg3B7O13Cl, is reported. Boracite is orthorhombic, space group Pca21, and the refined unit-cell parameters are a=8.557(6), b=8.553(8), c= 12.09(1) Å. X-ray powder-diffraction patterns have been calculated for the boracite-group minerals boracite, ericaite, trembathite and congolite. The calculated pattern for boracite is in good agreement with the observed pattern reported here, but the PDF entry (5-710) for boracite is missing several intense peaks. The calculated pattern for ericaite is in poor agreement with the PDF entry (29-697) for ericaite, and PDF 29-697 is for congolite, not ericaite. The calculated powder patterns presented here for these four minerals will facilitate their identification via X-ray powder diffraction. © 1995 International Centre for Diffraction Data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, D. E., and Evans, H. T. Jr., (1973). “Job 9214: Indexing and least-squares refinement of powder diffraction data,” U.S. Geol. Surv., Comput. Contrib. 20 (NTIS Document PB2-16188).Google Scholar
Burns, P. C., Stirling, J. A. R., and Hawthorne, F. C. (1992). “Trembathite, (Mg,Fe)3B7O13Cl, a new borate mineral from the Salt Springs potash deposit, Sussex, New Brunswick,” Can. Mineral. 30, 445448.Google Scholar
Dowty, E., and Clark, J. R. (1973). “Crystal-structure refinements for orthorombic boracite, Mg3B7O13Cl, and a trigonal, iron-rich analogue,” Zeit. für Kristallogr. 138, 6499.CrossRefGoogle Scholar
Honea, R. M., and Beck, F. R. (1962). “Chambersite, a new mineral,” Am. Mineral. 47, 665671.Google Scholar
Ito, T., Morimoto, N., and Sadanaga, R. (1951). “The crystal structure of boracite,” Acta Crystallogr. 4, 310316.CrossRefGoogle Scholar
Kühn, R., and Schaacke, I. (1955). “Vorkommen und Analyse der Boracit und Ericaitkristalle aus dem Salzhorst von Wathlingen-Hanigsen,” Kali und Seinsalz 11, 3342.Google Scholar
Mendoza-Alvarez, M. E., Yvon, K., Depmeier, W., and Schmid, H. (1985). “Structure refinement of trigonal iron-chlorine boracite,” Acta Crystallogr. C 41, 15511552.Google Scholar
Nelmes, R. J. (1974). “Structural studies of boracites. A review of the properties of boracites,” J. Phys. C: Solid State Phys. 7, 38403854.CrossRefGoogle Scholar
Sakthivel, A., and Young, R. A. (1992). “User's guide to programs DBWS-9006 and DBWS-9006PC for Rietveld analysis of X-ray and neutron powder diffraction patterns,” School of Physics, Georgia Institute of Technology, Atlanta, Georgia (unpublished).Google Scholar
Schmid, H. (1970). “Trigonal boracites—a new type of ferroelectric and ferromagnetoelectric that allows no 180° electric polarization reversal,” Phys. Stat. Sol. 37, 209223.CrossRefGoogle Scholar
Schmid, H., and Tippmann, H. (1978). “Spontaneous birefringence in boracites—measurements and applications,” Ferroelectrics 20, 2136.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32, 751767.CrossRefGoogle Scholar
Sueno, S., Clark, J. R., Papike, J. J., and Konnert, J. A. (1973). “Crystal-structure refinement of cubic boracite,” Am. Mineral. 58, 691697.Google Scholar
Wendling, E., Hodenberg, R. V., and Kühn, R. (1972). “Congolit, der Trigonale Eisenboracit,” Kali und Steinsalz 6, 13.Google Scholar