Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T08:43:38.726Z Has data issue: false hasContentIssue false

Amorphous X-Ray Scattering in Coals and Devolatilized Coal By-Products

Published online by Cambridge University Press:  19 May 2016

David L. Wertz*
Affiliation:
Department of Chemistry, and Center for Coal Product Research, University of Southern Mississippi, Hattiesburg, Mississippi 39406-5043, U.S.A.

Abstract

The X-ray powder pattern of a partially combusted coal product has been separated into its diffraction component (caused by die crystalline minerals present in the sample) and its amorphous scattering component which is due to the fixed carbon retained in the sample. Analysis of the atompair intensity of the amorphous scattering component indicates that the molecular scatterer(s) in the fixed carbon fraction are similar, at least in short range structural details, to those in an amorphous carbon black sample which was prepared by high temperature combustion of polynuclear aromatic materials.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cookson, D. J. & Smith, B. E. (1987). Energy and Fuels 1, 111Google Scholar
Cullity, B. D. (1974). Elements of X-Ray Diffraction. Reading, MA; Addison-Wesley.Google Scholar
Davis, B. L., Johnson, L. R. & Mebrahtu, T. (1986). Pow. Diff. 1, 244.Google Scholar
Franklin, R. E. (1950). Acta Crystallogr. 3, 107.Google Scholar
Gould, R.F., ed. (1978). Organic Chemistry of Coal, Am. Chem. Soc. Ch. 1,2Google Scholar
Grindheim, S. & Stolevik, R. (1976). Acta Chem. Scand, Ser. A, 30, 625Google Scholar
Hajdu, F. (1972). Acta Crystallogr. A28, 250.Google Scholar
Holder, A.J. & Wertz, D. L. (1987). J Phys. Chem. 91, 3479.Google Scholar
Johansson, G. & Wakita, H. (1985). Inorg. Chem. 24, 3047.Google Scholar
Konnert, J. H. & Karle, J. (1973). Acta Crystallogr. A29, 702.Google Scholar
Kwan, J. T. & Yen, T. F. (1976). A.C.S. Div. Fuel Chem. 21.Google Scholar
Lovell, R. & Windle, L. (1981). Polymer 22, 3047.Google Scholar
Maeda, M. & Ohtaki, H. (1977). Bull. Chem. Soc. Jpn. 50, 1893.Google Scholar
McCarthy, G. J. (1986). Pow. Diff. 1, 50.Google Scholar
Nelson, J. B. (1954). Fuel 32, 153, 381.Google Scholar
Ohtsuka, Y., Tamai, Y. & Tomita, A. (1987). Energy and Fuels 1, 32.Google Scholar
Smith, D. K., Johnson, G. G., Scheible, A., Wims, A. M., Johnson, J. L. & Ullrnan, G. (1987). Pow. Diff. 2, 73.Google Scholar
Wertz, D. L. & Cook, G. A. (1985). J. Solution Chem. 14, 41.Google Scholar
Wertz, D. L. & Kruh, R. F. (1967). J. Chem. Phys. 47, 388.Google Scholar
Zevin, L. S. & Zevin, I. M. (1987). Pow. Diff. 2, 78.Google Scholar