Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T09:43:18.888Z Has data issue: false hasContentIssue false

Automated parametric Rietveld refinement: Applications in reaction kinetics and in the extraction of microstructural information

Published online by Cambridge University Press:  06 March 2012

P. Rajiv
Affiliation:
Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
R. E. Dinnebier*
Affiliation:
Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
M. Jansen
Affiliation:
Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
M. Joswig
Affiliation:
Institute for Geophysics, Stuttgart University, Azenbergstraße 16, 70174, Stuttgart, Germany
*
a)Electronic mail: r.dinnebier@fkf.mpg.de

Abstract

Two applications of parametric Rietveld refinement employing a newly developed robust computer program are presented. The first application focuses on the parametric kinetic analysis of the reactions involving phase transitions of various polymorphic forms of copper phthalocyanine pigments. The second application concerns the parameterization of crystallite size with respect to experimental temperature. XRPD data for nanocrystalline titanium dioxide measured in dependence on temperature are used in this case study. Both the applications were realized with the help of the developed program in combination with the launch mode of topas® software.

Type
Powder Diffraction Software
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avrami, M. (1939). “Kinetics of phase change I. General theory,” J. Chem. Phys. 7, 11031112.10.1063/1.1750380CrossRefGoogle Scholar
Avrami, M. (1941). “Granulation, phase change, and microstructure kinetics of phase change. III,” J. Chem. Phys. 9, 177184.10.1063/1.1750872CrossRefGoogle Scholar
Balzar, D. (1999). “Voigt-function model in diffraction line-broadening analysis in defect and microstructure analysis from diffraction,” International Union of Crystallography Monographs on Crystallography No. 10 (Oxford University Press, New York).Google Scholar
Caglioti, G., Paoletti, A., and Ricci, F. P. (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Instrum. 3, 223228.10.1016/0369-643X(58)90029-XCrossRefGoogle Scholar
Coelho, A. A. (2007). topas, v4.0, Bruker AXS, Coelho 2007(Brisbane, Australia).Google Scholar
David, W. I. F., Leoni, M., and Scardi, P. (2010). “Domain size analysis in the Rietveld method,” Mater. Sci. Forum 651, 187200.10.4028/www.scientific.net/MSF.651.187CrossRefGoogle Scholar
Farjas, J. and Roura, P. (2006). “Modification of the Kolmogorov-Johnson-Mehl-Avrami rate equation for non-isothermal experiments and its analytical solution,” Acta Mater. 54, 55735579.10.1016/j.actamat.2006.07.037CrossRefGoogle Scholar
Hill, R. J. and Howard, C. J. (1987). “Quantitative phase analysis from neutron powder diffraction data using the Rietveld method,” J. Appl. Crystallogr. 20, 467474.10.1107/S0021889887086199CrossRefGoogle Scholar
Hinrichsen, B., Dinnebier, R. E., and Jansen, M. (2006). “Powder 3D: An easy to use program for data reduction and graphical presentation of large numbers of powder diffraction patterns,” Z. Krist. 23, 231236.10.1524/zksu.2006.suppl_23.231CrossRefGoogle Scholar
Iordanova, R., Lefterova, E., Uzunuv, I., Dimitriev, Y., and Klissurski, D. (2002), “Nonisothermal crystallisation kinetics of V2O5-MoO3-Bi2O3 glasses,” J. Therm. Anal. Calorim. 70, 393404.10.1023/A:1021612204744CrossRefGoogle Scholar
Malek, J. and Mitsuhashi, T. (2000). “Testing method for the Johnson-Mehl-Avrami Equation in kinetic analysis of crystallization processes,” J. Am. Ceram. Soc. 83, 21032105.10.1111/j.1151-2916.2000.tb01523.xCrossRefGoogle Scholar
Müller, M., Dinnebier, R. E., Jansen, M., Wiedemann, S., and Plueg, C. (2010). “The influence of temperature, additives and polymorphic form on the kinetics of the phase transformations of copper phthalocyanine,” Dyes Pigm. 85, 152161.10.1016/j.dyepig.2009.10.018CrossRefGoogle Scholar
Müller, M., Dinnebier, R. E., Jansen, M., Wiedemann, S., and Plüg, C. (2009). “Kinetic analysis of the phase transformation from α to β-copper phthalocyanine: A case study for sequential and parametric Rietveld refinements,” Powder Diffr. 24, 191199.10.1154/1.3194111CrossRefGoogle Scholar
Rajiv, P., Dinnebier, R. E., and Jansen, M. (2010). “powder 3d parametric—A program for automated sequential and parametric Rietveld refinement using topas,” Mater. Sci. Forum 651, 97104.10.4028/www.scientific.net/MSF.651.97CrossRefGoogle Scholar
Stinton, G. W. and Evans, J. S. O. (2007). “Parametric Rietveld refinement,” J. Appl. Crystallogr. 40, 8795.10.1107/S0021889806043275/db5010sup1.txtCrossRefGoogle ScholarPubMed