Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T21:44:01.623Z Has data issue: false hasContentIssue false

Characterization of a new solid lipid nanoparticle formulation containing retinoic acid for topical treatment of acne

Published online by Cambridge University Press:  06 March 2012

Gisele A. Castro
Affiliation:
Department of Pharmaceutics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Lucas A. M. Ferreira
Affiliation:
Department of Pharmaceutics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Rodrigo L. Oréfice
Affiliation:
Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Vicente T. L. Buono
Affiliation:
Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

Abstract

Solid lipid nanoparticles (SLNs) were characterized by differential scanning calorimetry (DSC) and powder diffraction. The DSC thermograms showed a slight reduction in the melting point of lipid matrix and a broadening of its melting peak, indicating an increased number of lattice defects in SLNs. X-ray powder diffraction data also revealed a slightly broader reflection for SLNs and the presence of X-ray peaks of the all-trans retinoic acid (RA) crystals outside of the lipid matrix of SLNs without stearylamine (STE). These data suggest the presence of an extensive association of ion pairing components (RA and STE), and indicate that the utilization of some specific types of compounds containing amine groups is an interesting approach to improve the encapsulation efficiency of RA in SLNs. The formation of the ion pairing is an interesting alternative for RA encapsulation in SLNs, improving the benefits obtained by the drug incorporation in lipid matrix (increased stability, controlled release, and targeting effect), which are important for the topical treatment of acne.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Castro, G.A., Oréfice, R.L., Vilela, J.M. C., Andrade, M.S., and Ferreira, L.A. M. (2007). “Development of a new solid lipid nanoparticle formulation containing retinoic acid for topical treatment of acne,” J. Microencapsul.JOMIEF 24, 395407. 5lp, JOMIEF CrossRefGoogle ScholarPubMed
Dingler, A. and Gohla, S. (2002). “Production of solid lipid nanoparticles (SLN): scaling up feasibilities,” J. Microencapsul.JOMIEF 19, 1116. 5lp, JOMIEF CrossRefGoogle ScholarPubMed
Freitas, C. and Müller, R.H. (1999). “Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase,” Eur. J. Pharm. Biopharm.EJPBEL 47, 125132. 8kb, EJPBEL CrossRefGoogle ScholarPubMed
Ellis, C.N., Millikan, L.E., Smith, E.B., Chalker, D.M., Swinyer, L.J., Katz, I.H., Berger, R.S., Mills, O.H. Jr., Baker, M., Verschoore, M., and Loesche, C. (1998). “Comparison of adapalene 01% solution and tretinoin 0025% gel in topical treatment of acne vulgaris,” Br. J. Dermatol.BJDEAZ 139(S52), 4147. 3ct, BJDEAZ CrossRefGoogle Scholar
Gollnick, H. and Schramm, M. (1998). “Topical drug treatment in acne,” Dermatology (Basel, Switz.)DERAEG 196, 119125. 3hb, DERAEG CrossRefGoogle ScholarPubMed
Hu, L., Tang, X., and Cui, F. (2004). “Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs,” J. Pharm. Pharmacol.JPPMAB 56, 15271535. 5m8, JPPMAB CrossRefGoogle ScholarPubMed
Jenning, V. (1999). “Feste Lipid-Nanopartikel (SLN™) als Trägersystem für die dermale Applikation von Retinol: Wirkstoffinkorporation,-freisetzung und Struktur,” Ph.D thesis, Freie Universität Berlin, Berlin, Germany (in German).Google Scholar
Jenning, V. and Gohla, S. (2000). “Comparison of wax and glyceride solid lipid nanoparticles (SLN®),” Int. J. Pharm.IJPHDE 196, 219222. hde, IJPHDE CrossRefGoogle ScholarPubMed
Jenning, V. and Gohla, S.H. (2001). “Encapsulation of retinoids in solid lipid nanoparticles (SLN),” J. Microencapsul.JOMIEF 18, 149158. 5lp, JOMIEF Google ScholarPubMed
Jenning, V., Schäfer-Korting, M., and Gohla, S. (2000a). “Vitamin A-loaded solid lipid nanoparticles for topical use: Drug release properties,” J. Controlled ReleaseJCREEC 66, 115126. 8kf, JCREEC CrossRefGoogle ScholarPubMed
Jenning, V., Thünemann, A.F., and Gohla, S. (2000b). “Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids,” Int. J. Pharm.IJPHDE 199, 167177. hde, IJPHDE CrossRefGoogle ScholarPubMed
Kayali, I., Ward, A.J. I., Suhery, T., Friberg, S.E., Simion, A., and Rhein, L.D. (1991). “Interactions of retinoic acid with a model of stratum corneum lipids,” J. Dermal Clinical Evaluation Soc. 2, 717.Google Scholar
Larsson, K. (1966). “Classification of glyceride crystal forms,” Acta Chem. Scand.ACHSE7 20, 22552260. act, ACHSE7 CrossRefGoogle ScholarPubMed
Lim, S.-J. and Kim, C.-K. (2002). “Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid,” Int. J. Pharm.IJPHDE 243, 135146. hde, IJPHDE CrossRefGoogle ScholarPubMed
Lim, S.-J., Lee, M.-K., and Kim, C.-K. (2004). “Altered chemical and biological activities of all-trans retinoic acid incorporated in solid lipid nanoparticle powders,” J. Controlled ReleaseJCREEC 100, 5361. 8kf, JCREEC CrossRefGoogle ScholarPubMed
Liu, J., Wen, H., Chen, H., Ni, Q., Xu, H., and Yang, X. (2007). “Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery,” Int. J. Pharm.IJPHDE 328, 191195. hde, IJPHDE CrossRefGoogle ScholarPubMed
Manjunath, K. and Venkateswarlu, V. (2005). “Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration,” J. Controlled ReleaseJCREEC 107, 215228. 8kf, JCREEC CrossRefGoogle ScholarPubMed
Mills, O.H. Jr. and Berger, R.S. (1998). “Irritation potential of new topical tretinoin formulation and a commercially-available tretinoin formulation as measured by patch testing in human subjects,” J. Am. Acad. Dermatol.ZZZZZZ 38, S1116. 5aj, ZZZZZZ CrossRefGoogle Scholar
Müller, R.H., Mäder, K., and Gohla, S. (2000). “Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art,” Eur. J. Pharm. Biopharm.EJPBEL 50, 161177. 8kb, EJPBEL CrossRefGoogle ScholarPubMed
Müller, R.H., Mehnert, W., Lucks, J.-S., Schwarz, C., zur Mühlen, A., Meyhers, H., Freitas, C., and Rühl, D. (1995). “Solid lipid nanoparticles (SLN)—an alternative colloidal carrier system for controlled drug delivery,” Eur. J. Pharm. Biopharm.EJPBEL 41, 6269. 8kb, EJPBEL Google Scholar
Münster, U., Nakamura, C., Haberland, A., Jores, K., Mehnert, W., Rummel, S., Schaller, M., Korting, H.C., Zouboulis, Ch.C., Blume-Peytavi, U., and Schäfer-Korting, M. (2005). “RU58841-myristate—prodrug development for topical treatment of acne and androgenetic alopecia,” PharmaziePHARAT 60, 812. 6km, PHARAT Google ScholarPubMed
Precht, D. (1988). “Fat crystal structure in cream and butter,” in Crystallization and Polymorphism of Fats and Fatty Acids, edited by Garti, N. and Sato, K. (Marcel Dekker, New York), pp. 305–355.Google Scholar
United States Pharmacopoeial Convention (2003). The United States Pharmacopeia-National Formulary (USP 26-NF 21) (VSP, Rockville, Maryland), pp. 1861–1862.Google Scholar
Westesen, K., Bunjes, H., and Koch, M.H. J. (1997). “Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential,” J. Controlled ReleaseJCREEC 48, 223236. 8kf, JCREEC CrossRefGoogle Scholar
Webster, G.F. (1998). “Topical tretinoin in acne therapy,” J. Am. Acad. Dermatol.ZZZZZZ 39, S3844. 5aj, ZZZZZZ CrossRefGoogle ScholarPubMed
Yang, S.C., Lu, L.F., Cai, Y., Zhu, J.B., Liang, B.W., and Yan, C.Z. (1999). “Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain,” J. Controlled ReleaseJCREEC 59, 299307. 8kf, JCREEC CrossRefGoogle ScholarPubMed