Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T06:04:23.383Z Has data issue: false hasContentIssue false

Characterizing nanoparticles with a laboratory diffractometer: from small-angle to total X-ray scattering

Published online by Cambridge University Press:  10 November 2014

Marco Sommariva*
Affiliation:
PANalytical B.V., Lelyweg 1, 7602 EA Almelo, The Netherlands
Milen Gateshki
Affiliation:
PANalytical B.V., Lelyweg 1, 7602 EA Almelo, The Netherlands
Jan-André Gertenbach
Affiliation:
PANalytical B.V., Lelyweg 1, 7602 EA Almelo, The Netherlands
Joerg Bolze
Affiliation:
PANalytical B.V., Lelyweg 1, 7602 EA Almelo, The Netherlands
Uwe König
Affiliation:
PANalytical B.V., Lelyweg 1, 7602 EA Almelo, The Netherlands
Bogdan Ştefan Vasile
Affiliation:
Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica from Bucharest, No. 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
Vasile-Adrian Surdu
Affiliation:
Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica from Bucharest, No. 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
*
a)Author to whom correspondence should be addressed. Electronic mail: marco.sommariva@panalytical.com

Abstract

X-ray diffraction and scattering on a single multipurpose X-ray platform have been used to probe the structure, composition, and thermal behavior of TiO2 nanoparticles ranging in size from 1 to 10 nm. Ambient and non-ambient Bragg diffraction, small-angle X-ray scattering (SAXS), as well as total scattering and pair-distribution function (PDF) analysis are combined to obtain a comprehensive picture of the samples. At these ultrasmall particle-size dimensions, SAXS and PDF prove powerful in distinguishing the salient features of the materials, in particular the size distribution of the primary particles (SAXS) and the identification of the TiO2 polymorphs (PDF). Structural features determined by X-ray scattering techniques are corroborated by high-resolution transmission electron microscopy. The elemental make-up of the materials has been measured using X-ray fluorescence spectrometry and energy-dispersive X-ray analysis.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balzar, D., Audebrand, N., Daymond, M. R., Fitch, A., Hewat, A., Langford, J. I., Le Bail, A., Louër, D., Masson, O., McCowan, C. N., Popa, N. C., Stephens, P. W., and Toby, B. H. (2004). “Size–strain line-broadening analysis of the ceria round-robin sample,” J. Appl. Crystallogr. 37, 911924.CrossRefGoogle Scholar
Ding, X. -Z., Liu, X. -H., and He, Y. -Z. (1996). “Grain size dependence of anatase-to-rutile structural transformation in gel-derived nanocrystalline titania powders,” J. Mater. Sci. Lett. 15, 17891791.CrossRefGoogle Scholar
Egami, T. and Billinge, S. J. L. (2012). Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Elsevier, Amsterdam).Google Scholar
Ermokhina, N. I., Nevinskiy, V. A., Manorik, P. A., Ilyin, V. G., Novichenko, V. N., Shcherbatiuk, M. M., Klymchuk, D. O., Tsyba, M. M., and Puziy, A. M. (2013). “Synthesis and characterization of thermally stable large-pore mesoporous nanocrystalline anatase,” J. Solid State Chem. 200, 9098.CrossRefGoogle Scholar
Farrow, C. L., Juhás, P., Liu, J. W., Bryndin, D., Bozin, E. S., Bloch, J., Proffen, Th., and Billinge, S. J. L. (2007). “PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals,” J. Phys.: Condens. Matter 19, 335219335225.Google ScholarPubMed
Grey, I. E. and Wilson, N. C. (2007). “Titanium vacancy defects in sol–gel prepared anatase,” J. Solid State Chem. 180, 670678.CrossRefGoogle Scholar
Hanaor, D. A. H. and Sorrell, C. C. (2011). “Review of the anatase to rutile phase transformation,” J. Mater. Sci. 46, 855.CrossRefGoogle Scholar
Howell, R. C., Proffen, T., and Conradson, S. D. (2006). “Pair distribution function and structure factor of spherical particles,” Phys. Rev. B 73, 094107094114.CrossRefGoogle Scholar
ICDD (2013). PDF-4+ 2013 (Database), edited by Dr. Kabekkodu, Soorya, International Centre for Diffraction Data, Newtown Square, PA, USA.Google Scholar
Juhás, P., Davis, T., Farrow, C. L., and Billinge, S. J. L. (2013). “PDFgetX3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions,” J. Appl. Crystallogr. 46, 560566.CrossRefGoogle Scholar
Kim, B. H., Hackett, M. J., Park, J., and Hyeon, T. (2014). “Synthesis, characterization, and application of ultrasmall nanoparticles,” Chem. Mater. 26(1), 5971.CrossRefGoogle Scholar
Reiss, C. A., Kharchenko, A., and Gateshki, M. (2012). “On the use of laboratory X-ray diffraction equipment for Pair Distribution Function (PDF) studies,” Z. Kristallogr. 227, 257261.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Sommariva, M. (2013). “Multi-technique approach for nanoparticles characterization on a laboratory X-ray diffractometer,” Solid State Phenom. 203–204, 1720.CrossRefGoogle Scholar
te Nijenhuis, J., Gateshki, M., and Fransen, M. J. (2009). “Possibilities and limitations of X-ray diffraction using high-energy X-rays on a laboratory system,” Z. Kristallogr. Suppl. 30, 163169.CrossRefGoogle Scholar