Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T09:47:04.415Z Has data issue: false hasContentIssue false

Chemical reactions in the Co–Si–C system

Published online by Cambridge University Press:  29 February 2012

Yu Guo
Affiliation:
Department of Chemistry, School of Applied Science, University of Science and Technology Beijing, Beijing 100083, China
Wenxia Yuan
Affiliation:
Department of Chemistry, School of Applied Science, University of Science and Technology Beijing, Beijing 100083, China
Bo Song
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, China
Yanping Xu
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, China

Abstract

Isothermal sections at 1100 and 1500 °C were determined by X-ray powder diffraction method to reveal stable phases and chemical pathways in the Co–Si–C system. There is no ternary compound present in either isothermal. Cobalt silicides are formed in the Co-rich region at temperatures lower than those in the Si-rich region. CoSi2 reacts with carbon to form CoSi and SiC at 1500 °C, and Co2Si and CoSi are more stable in equilibrium with carbon. The results are also discussed in terms of thermodynamics and binding energy of the reacting substances.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, S., Ganesan, V., Tyagi, A. K., and Jain, I. P. (2006). “Effect of annealing on magnetic properties and silicide formation at Co/Si interface,” Bull. Mater. Sci.BUMSDW10.1007/s12034-006-0018-x 29, 647651.CrossRefGoogle Scholar
Bhanumurthy, K. and Schmid-Fetzer, R. (2001). “Interface reactions between silicon carbide and metals (Ni, Cr, Pd, Zr),” Composites, Part ACASMFJ 32, 569574.CrossRefGoogle Scholar
Casady, J. B. and Johnson, R. W. (1996). “Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review,” Solid-State Electron.SSELA510.1016/0038-1101(96)00045-7 39, 14091422.CrossRefGoogle Scholar
Chang, Y. G. and Kao, C. R. (1994). “Application of thermodynamics, phase equilibria and kinetics to in-situ composite synthesis via ternary solid-state displacement reactions,” Pure Appl. Chem.PACHAS 66, 17971806.CrossRefGoogle Scholar
Chen, X. L. and Eysel, W. (1999). “Subsolidus phase relations in La2O3–Bi2O3–CuO,” Powder Diffr.PODIE2 14, 274275.CrossRefGoogle Scholar
Constantinidis, G., Pecz, B., Tsagaraki, K., Kayambaki, M., and Michelakis, K. (1999). “Improvements in Pt-based Schottky contacts to 3C–SiC,” Mater. Sci. Eng., BMSBTEK B61–62, 406410.CrossRefGoogle Scholar
Corni, F., Tonini, R., Ottaviani, G., Alberici, S., Erbetta, D., and Marangon, T. (2004). “Phase formations in Co-Silicon system,” Microelectron. Eng.MIENEF10.1016/j.mee.2004.07.038 76, 343348.CrossRefGoogle Scholar
Enoki, H., Ishida, K., and Nishizawa, T. (1990). “Phase equilibria in cobalt-rich portions of the Co–Si and Co–Ge systems,” J. Less-Common Met.JCOMAH 160, 153160.CrossRefGoogle Scholar
Goesmann, F. and Schmid-Fetzer, R. (1997). “Metals on 6H–SiC: contact formation from the materials science point of view,” Mater. Sci. Eng., BMSBTEK10.1016/S0921-5107(96)02005-3 46, 357362.CrossRefGoogle Scholar
Hirai, M., Kamezawa, C., Azatyan, S., An, Z., Shinagawa, T., Fujisawa, T., Kusaka, M., and Iwami, M. (2005). “Interface study of transition metal (Fe, Zr) on 4H–SiC(0 0 0 1)Si face: photoemission electron microscopy and soft X-ray fluorescence spectroscopy,” Appl. Surf. Sci.ASUSEE 249, 362366.CrossRefGoogle Scholar
Jo, C., Kim, D.-C., and Lee, J. I. (2006). “Magnetic properties of Co–Si alloy clusters,” J. Magn. Magn. Mater.JMMMDC 306, 156160.CrossRefGoogle Scholar
Oh, J. C., Yun, E., Golkovski, M. G., and Lee, S. (2003). “Improvement of hardness and wear resistance in SiC/Ti-6Al-4 V surface composites fabricated by high-energy electron beam irradiation,” Mater. Sci. Eng., AMSAPE3 351, 98108.CrossRefGoogle Scholar
Park, J. S., Landry, K., and Perepezko, J. H. (1999). “Kinetic control of silicon carbide/metal reactions,” Mater. Sci. Eng., AMSAPE310.1016/S0921-5093(98)00899-5 259, 279286.CrossRefGoogle Scholar
Park, S. W., Kim, Y. I., Kwak, J. S., and Baik, H. K. (1997). “Investigation of Co/SiC interface reaction,” J. Electron. Mater.JECMA510.1007/s11664-997-0145-1 26, 172177.CrossRefGoogle Scholar
Porter, L. M. and Davis, R. F. (1995). “A critical review of ohmic and rectifying contacts for silicon carbide,” Mater. Sci. Eng., BMSBTEK10.1016/0921-5107(95)01276-1 34, 83105.CrossRefGoogle Scholar
Rijnders, M. R., Kodentsov, A. A., van Beek, J. A., van den Akker, J., and van Loo, F. J. J. (1997). “Pattern formation in Pt–SiC diffusion couples,” Solid State IonicsSSIOD310.1016/S0167-2738(96)00578-4 95, 5159.CrossRefGoogle Scholar
Schuster, J. C. (1993-1994). “Silicon carbide and transition metals: a critical evaluation of existing phase diagram data supplemented by new experimental results,” Int. J. Refract. Met. Hard Mater.IRMME310.1016/0263-4368(93)90045-H 12, 173177.CrossRefGoogle Scholar
Seng, W. F. and Barnes, P. A. (2000). “Calculations of cobalt silicide and carbide formation on SiC using the Gibbs free energy,” Mater. Sci. Eng., BMSBTEK 76, 225231.CrossRefGoogle Scholar
Sha, Z. D., Wua, X. M., Zhuge, L. J., and Meng, Y. D. (2006). “Initial study on the structure and photoluminescence properties of SiC films doped with Co,” Physica E (Amsterdam)PELNFM 35, 3841.CrossRefGoogle Scholar
van Dal, M. J. H., Huibers, D. G. G. M., Kodentsov, A. A., and van Loo, F. J. J. (2001). “Formation of Co–Si intermetallics in bulk diffusion couples. Part I. Growth kinetics and mobilities of species in the silicide phases,” IntermetallicsIERME510.1016/S0966-9795(01)00018-8 9, 409421.CrossRefGoogle Scholar
Venter, A., Samiji, M. E., and Leitch, A. W. R. (2004). “Thermal stability of Ru, Pd and Al Schottky contacts to p-type 6H–SiC,” Phys. Status Solidi CZZZZZZ 1, 22642268.CrossRefGoogle Scholar
Walter, D. and Karyasa, I. W. (2005). “Synthesis and characterization of cobalt monosilicide (CoSi) with CsCl structure stabilized by a β-SiC matrix,” Z. Anorg. Allg. Chem.ZAACAB10.1002/zaac.200500050 631, 12851288.CrossRefGoogle Scholar
Wang, W. J., Chen, X. L., Song, Y. T., Yuan, W. X., Cao, Y. G., and Wu, X. (2004). “Assessment of Li–Ga–N ternary system and GaN single crystal growth,” J. Cryst. GrowthJCRGAE 264, 1316.CrossRefGoogle Scholar
Weitzel, C. E., Palmour, J. W., Carter, C. H., Moore, K., Nordquist, K. K., Allen, S., Thero, C., and Bhatnagar, M. (1996). “Silicon carbide high-power devices,” IEEE Trans. Electron DevicesIETDAI10.1109/16.536819 43, 17321741.CrossRefGoogle Scholar
Yang, S. J., Kim, C. K., Noh, I. H., Jang, S. W., Jung, K. H., and Cho, N. I. (2004). “Study of Co- and Ni-based ohmic contacts to n-type 4H–SiC,” Diamond Relat. Mater.DRMTE310.1016/j.diamond.2003.10.067 13, 11491153.CrossRefGoogle Scholar
Yuan, W. X., Qiao, Z. Y., Ipser, H., and Eriksson, G. (2004). “Thermodynamic assessment of the Ni–Ga system,” J. Phase Equilib. Diffus.JPEDAV 25, 6874.CrossRefGoogle Scholar
Zhang, L., Du, Y., Xu, H., and Pan, Z. (2006). “Experimental investigation and thermodynamic description of the Co–Si system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem.CCCTD6 30, 470481.CrossRefGoogle Scholar