Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T07:16:22.172Z Has data issue: false hasContentIssue false

Crystal structure determination of molecular compounds from conventional powder diffraction data: Trimeric silver(I) 3,5-dimethylpyrazolate

Published online by Cambridge University Press:  10 January 2013

N. Masciocchi
Affiliation:
Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Università di Milano, via Venezian 21, 20133 Milano, Italy
P. Cairati
Affiliation:
Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Università di Milano, via Venezian 21, 20133 Milano, Italy
A. Sironi
Affiliation:
Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Università di Milano, via Venezian 21, 20133 Milano, Italy

Abstract

In the absence of single crystals, silver(I) 3,5-dimethylpyrazolate, [Ag(dmpz)]3, has been structurally characterized by ab initio X-ray powder diffraction, using conventional laboratory data. Its crystals are triclinic, P1¯, with a=8.0876(10), b=11.1204(13), c=11.6136(16) Å, α=68.293(6), β=78.350(7), and γ=81.243(6)°. The structure has been solved by Patterson, difference Fourier, and geometrical modeling, and ultimately refined by the Rietveld method down to Rp=0.068, Rwp=0.085, and RF=0.055, for 4300 observations in the 17<2θ<103° range. Each molecule consists of a cyclic, trimeric assembly of Ag(dmpz) fragments, with the dmpz ligand bridging, in the exo-bidentate mode, nonbonded Ag…Ag edges.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Burla, M. C., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., and Polidori, G. (1995). “EXTRA: A program for extracting structure-factor amplitudes from powder diffraction data,” J. Appl. Crystallogr. 28, 842846.CrossRefGoogle Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G., and Camalli, M. (1994). “SIRPOW.92—A program for automatic solution of crystal structures by direct methods optimized for powder data,” J. Appl. Crystallogr. 27, 435436.Google Scholar
Ardizzoia, G. A., Cenini, S., La Monica, G., Masciocchi, N., and Moret, M. (1994). “Synthesis, X-ray structure and catalytic properties of the unprecedented tetranuclear copper(I) species [Cu(dppz)]4 (Hdppz=3, 5-diphenylpyrazole),” Inorg. Chem. 33, 14581463.CrossRefGoogle Scholar
Ardizzoia, G. A., Angaroni, M. A., La Monica, G., Cariati, F., Cenini, S., Moret, M., and Masciocchi, N. (1991). “Reaction of dioxygen with [Cu(dmpz)]n (Hdmpz=3, 5-Dimethylpyrazole). Crystal structure, reactivity and catalytic properties of [Cu 8(dmpz)8(OH)8],Inorg. Chem. 30, 43474353.CrossRefGoogle Scholar
Corradi, E., Masciocchi, N., Pàlyi, G., Sironi, A., Ugo, R., Vizi-Orosz, A., and Zucchi, C. (1997). “Synthesis and X-ray powder diffraction characterization of (CO)2RhCl 2Rh(COD),” J. Chem. Soc., Dalton Trans (in press).Google Scholar
De Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: Application of the March model,” J. Appl. Crystallogr. 19, 267272.CrossRefGoogle Scholar
Ehlert, M. K., Rettig, S. J., Storr, A., Thompson, R. C., and Trotter, J. (1990). “Synthesis and X-ray crystal structure of the 3,5-dimethylpyrazolato copper(I) trimer, [Cu(pz )]3,Can. J. Chem. 68, 14441449.CrossRefGoogle Scholar
Jansen, E., Schäfer, W., and Will, G. (1988). “Profile fitting and the two-stage method in neutron powder diffractometry for structure and texture analysis,” J. Appl. Crystallogr. 21, 228239.CrossRefGoogle Scholar
Kempster, C. J. E., and Lipson, H. (1972). “A rapid method for assessing the number of molecules in the unit cell of an organic crystal,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 36743675.CrossRefGoogle Scholar
La Monica, G., and Ardizzoia, G. A. (1997). Progress in Inorganic Chemistry, 46, 151–238.CrossRefGoogle Scholar
Larson, A. C., and Von Dreele, R. B. (1994). “GSAS: General Structure Analysis System,” LANSCE, MS-H805, Los Alamos National Laboratory, Los Alamos, NM 87545.Google Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab initio structure determination of LiSbWo 6 by X-ray powder diffraction,” Mater. Res. Bull. 23, 447452.CrossRefGoogle Scholar
Masciocchi, N. (1995). “Solving crystal structures from powder diffraction data: Patterson, geometrical modelling, trial-and-error and maximum entropy methods,” Ricerca Scientifica ed Educazione Permanente, University of Milan Ed. 98, 115–140.Google Scholar
Masciocchi, N., Moret, M., Cairati, P., Sironi, A., Ardizzoia, G. A., and La Monica, G. (1994). “The multiphase nature of the Cu(pz) and Ag(pz) (Hpz=pyrazole) systems: selective syntheses and ab initio X-ray powder diffraction structural characterization of copper(I) and silver(I) pyrazolates,” J. Am. Chem. Soc. 116, 76687676.CrossRefGoogle Scholar
Masciocchi, N., Ardizzoia, G. A., La Monica, G., Moret, M., and Sironi, A. (1997). “Polymorphism in coordination chemistry. Selective syntheses and ab initio X-ray powder diffraction characterization of two new crystalline phases of solid [Pd(dmpz)2(Hdmpz)2]2 (Hdmpz=3, 5-dimethylpyrazolate),” Inorg. Chem. 36, 449454.CrossRefGoogle Scholar
Pawley, G. S. (1981). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr. 14, 357361.CrossRefGoogle Scholar
Raptis, R. G., Murray, H. H. III, and Fackler, J. P. Jr. (1987). “The synthesis and crystal structure of a novel gold(I)-pyrazolate hexamer containing an 18-membered inorganic ring,” J. Chem. Soc. Chem. Commun. 737739.CrossRefGoogle Scholar
Riello, P., Fagherazzi, G., and Canton, P. (1995). “X-ray Rietveld analysis with a physically based background,” J. Appl. Crystallogr. 28, 115120.CrossRefGoogle Scholar
Smith, G. S. (1976). “Estimating unit cell volumes from powder diffraction data: The triclinic case,” J. Appl. Crystallogr. 9, 424426.CrossRefGoogle Scholar
Smith, G. S. (1977). “Estimating the unit cell volume from one line in a powder diffraction pattern: the triclinic case,” J. Appl. Crystallogr. 10, 252255.CrossRefGoogle Scholar
Smith, G. S., and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al 2O 3,J. Appl. Crystallogr. 20, 7983.CrossRefGoogle Scholar
Toraya, H. (1986). “Whole-powder-pattern fitting without reference to a structural model: application to X-ray powder data,” J. Appl. Crystallogr. 19, 440447.CrossRefGoogle Scholar
Werner, P.-E., Eriksson, L., and Westdahl, M. (1985). “TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr. 18, 367370.CrossRefGoogle Scholar