Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T08:59:35.945Z Has data issue: false hasContentIssue false

Crystal structure determination of non-stoichiometric Ca4−xRuO6−x (x = 1.17) from X-ray powder diffraction data

Published online by Cambridge University Press:  17 February 2016

Martin Etter
Affiliation:
Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
Maximilian J. Krautloher
Affiliation:
Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
Nakheon Sung
Affiliation:
Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
Joel Bertinshaw
Affiliation:
Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
Bumjoon Kim
Affiliation:
Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
Robert E. Dinnebier*
Affiliation:
Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
*
a)Author to whom correspondence should be addressed. Electronic mail: R.Dinnebier@fkf.mpg.de

Abstract

A new non-stoichiometric calcium ruthenate [Ca4−xRuO6−x with x = 1.17(1)] was synthesized by the flux growth method and characterized by the X-ray powder diffraction. The crystal structure is isostructural to the K4CdCl6 type with space group R$\bar 3$c. Unit-cell parameters are a = 9.2881(1), c = 11.1634(2) Å, V = 834.03(3) Å3, and Z = 6.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergerhoff, G. and Schmitz-Dumont, O. (1954). “Die Struktur von Kaliumcadmiumchlorid K4CdCl6 ,” Naturwissenschaften 41, 280281.Google Scholar
Braden, M., André, G., Nakatsuji, S., and Maeno, Y. (1998). “Crystal and magnetic structure of Ca2RuO4: magnetoelastic coupling and the metal–insulator transition,” Phys. Rev. B 58, 847861.Google Scholar
Cao, G., McCall, S., Crow, J. E., and Guertin, R. P. (1997). “Observation of a metallic antiferromagnetic phase and metal to nonmetal transition in Ca3Ru2O7 ,” Phys. Rev. Lett. 9, 17511754.Google Scholar
Cao, G., Lin, X. N., Balicas, L., Chikara, S., Crow, J. E., and Schlottmann, P. (2004). “Orbitally driven behaviour: Mott transition, quantum oscillations and colossal magnetoresistance in bilayered Ca3Ru2O7 ”, New J. Phys. 6, 159.Google Scholar
Coelho, A. A. (2007). “A Charge Flipping algorithm incorporating the tangent formula for solving difficult structures,” Acta Crystallogr. A 36, 400406.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.Google Scholar
Komer, W. D. and Machin, D. J. (1978). “Ternary and quarternary oxides of rutheniums and iridium,” Less-Common MET 61, 91105.Google Scholar
Nakatsuji, S., Ikeda, S.-I., and Maeno, Y. (1997a). “Ca2RuO4: new mott insulators of layered ruthenate,” J. Phys. Soc. Jpn. 66, 18681871.Google Scholar
Nakatsuji, S., Ikeda, S.-I., and Maeno, Y. (1997b). “New layered pervoskite ruthenates: Ca2RuO4 ,” Physica C 282–287, 729730.Google Scholar
Pawley, G. S. (1981). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr. 14, 357361.Google Scholar
Tripathi, S., Rana, R., Kumar, S., Pandey, P., Singh, R. S., and Rana, D. S. (2014). “Ferromagnetic CaRuO3 ,” Sci. Rep. 4, 3877.Google Scholar
Yoshida, Y., Ikeda, S.-I., Matsuhata, H., Shirakawa, N., Lee, C. H., and Katano, S. (2005). “Crystal and magnetic structure of Ca3Ru2O7 ,” Phys. Rev. B 72, 054412.Google Scholar
Supplementary material: File

Etter supplementary material

Etter supplementary material 1

Download Etter supplementary material(File)
File 265.4 KB