Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T11:44:28.017Z Has data issue: false hasContentIssue false

Crystal structure of strontium hydrogen citrate monohydrate, Sr(HC6H5O7)(H2O)

Published online by Cambridge University Press:  16 March 2021

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois60616, USA North Central College, 30 N. Brainard St., Naperville, Illinois60540, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

Abstract

The crystal structure of strontium hydrogen citrate monohydrate has been solved using laboratory X-ray powder diffraction data, refined using both laboratory and synchrotron data, and optimized using density functional techniques. Strontium hydrogen citrate monohydrate crystallizes in space group C2/c (#15) with a = 25.15601(17), b = 10.90724(6), c = 6.37341(4) Å, β = 91.9846(6)°, V = 1747.704(12) Å3, and Z = 8. The Sr coordination and the hydrogen bonding result in a layered structure. The SrO8 coordination polyhedra share edges to form corrugated layers parallel to the bc-plane. Hydrogen bonds between the carboxylic acid groups and water molecules link the layers. Intermolecular hydroxyl–carboxyl hydrogen bonds also link the layers in a ring pattern with a graph set symbol R2,2(12). After storage for 2 years, partial re-crystallization occurred, to an as-yet unknown compound with a triclinic unit cell.

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.CrossRefGoogle Scholar
Antao, S. M., Hassan, I., Wang, J., Lee, P. L., and Toby, B. H. (2008). “State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld refinement of quartz, sodalite, tremolite, and meionite,” Can. Mineral. 46, 15011509.CrossRefGoogle Scholar
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. Engl. 34, 15551573.CrossRefGoogle Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.CrossRefGoogle ScholarPubMed
Dassault Systèmes (2020). Materials Studio 2020 (BIOVIA, San Diego, CA).Google Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R., and Zicovich-Wilson, C. M. (2005). “CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals,” Z. Kristallogr. 220, 571573.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De Le Pierre, M., D'Arco, P., Noel, Y., Causa, M., Rerat, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.CrossRefGoogle Scholar
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23, 120126.CrossRefGoogle Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, Free objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.CrossRefGoogle Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gates-Rector, S. and Blanton, T. (2019). “The Powder Diffraction File: a quality materials characterization database,” Powd. Diffr. 39, 352360.CrossRefGoogle Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.CrossRefGoogle ScholarPubMed
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.CrossRefGoogle Scholar
Kaduk, J. A. (2018). “Crystal structures of tricalcium citrates,” Powd. Diffr. 33, 237243.Google Scholar
Kaduk, J. A. (2020a). “Crystal structures of two magnesium citrates from powder diffraction data,” Acta Cryst. E 76, 16111616.CrossRefGoogle Scholar
Kaduk, J. A. (2020b). “Crystal structure of aqua(hydrogencitrato)(citric acid)calcium monohydrate, [Ca(HC6H5O7)(H3C6H5O7)(H2O)](H2O) from synchrotron X-ray powder data, and DFT-optimized crystal structure of existing calcium hydrogen citrate trihydrate, [Ca(HC6H5O7)(H2O)3],” Acta Cryst. E 76, 16891693.CrossRefGoogle Scholar
Kaduk, J. A. (2021). “Tribarium dicitrate pentahydrate, [Ba3(C6H5O7)2(H2O)4](H2O),” Acta Cryst. E 77, 251254.CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J. (1996). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.CrossRefGoogle Scholar
Laun, J., Oliveira, D. V., and Bredow, T. (2018). “Consistent Gaussian basis sets of double- and triple-zeta valence with polarization quality of the fifth period for solid-state calculations,” J. Comput. Chem. 39, 12851290. doi:10.1002/jcc.25195CrossRefGoogle ScholarPubMed
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Radiat. 15, 427432.CrossRefGoogle ScholarPubMed
Louër, D. and Boultif, A. (2014). “Some further considerations in powder diffraction pattern indexing with the dichotomy method,” Powd. Diffr. 29, S7S12.CrossRefGoogle Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., and Wood, P. A. (2020). “Mercury 4.0: from visualization to design and prediction,” J. Appl. Crystallogr. 53, 226235.CrossRefGoogle ScholarPubMed
Materials Design (2016). MedeA 2.20.4 (Materials Design Inc., Angel Fire, NM).Google Scholar
MDI (2019). JADE Pro Version 7.8 (Computer Software) (Materials Data, Livermore, CA, USA).Google Scholar
Putz, H. and Brandenburg, K. (2019). Endeavour - Structure Solution from Powder Data Version 1.8b. Crystal Impact, Kreuzherrenstr. 102, Bonn, Germany. Available at: http://www.crystalimpact.com/endeavour.Google Scholar
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (group 1) citrate salts,” Acta Crystallogr. B: Cryst. Eng. Mater. 74, 239252. doi:10.1107/S2052520618002330.CrossRefGoogle ScholarPubMed
Shields, G. P., Raithby, P. R., Allen, F. H., and Motherwell, W. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Crystallogr. B: Struct. Sci. 56, 455465.CrossRefGoogle ScholarPubMed
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.CrossRefGoogle ScholarPubMed
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.CrossRefGoogle Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia). Available at: http://hirshfeldsurface.net.Google Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. B: Struct. Sci., Cryst. Eng. Mater. 70, 10201032.CrossRefGoogle Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.CrossRefGoogle Scholar
Zacharias, D. E. and Glusker, J. P. (1993). “Structure of strontium citrate pentahydrate,” Acta Crystallogr. C: Cryst. Struct. Commun. 49, 17321735. CSD Refcode LATRAZ.CrossRefGoogle ScholarPubMed