Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T11:44:07.019Z Has data issue: false hasContentIssue false

Crystal structures of ammonium citrates

Published online by Cambridge University Press:  11 December 2018

Austin M. Wheatley
Affiliation:
North Central College, 131 S. Loomis St., Naperville IL 60540, USA
James A. Kaduk*
Affiliation:
North Central College, 131 S. Loomis St., Naperville IL 60540, USA Illinois Institute of Technology, 3101 S. Dearborn St., Chicago IL 60616, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

Abstract

The crystal structures of (NH4)H2C6H5O7 and (NH4)3C6H5O7 have been determined using a combination of powder and single crystal techniques. The structure of (NH4)2HC6H5O7 has been determined previously by single crystal diffraction. All three structures were optimized using density functional techniques. The crystal structures are dominated by N-H⋅⋅⋅O hydrogen bonds, though O-H⋅⋅⋅O hydrogen bonds are also important. In (NH4)H2C6H5O7 very strong centrosymmetric charge-assisted O-H-O hydrogen bonds link one end of the citrate into chains along the b-axis. A more-normal O-H⋅⋅⋅O hydrogen bond links the other end of the citrate to the central ionized carboxyl group. In (NH4)2HC6H5O7, the very strong centrosymmetric O-H-O hydrogen bonds link the citrates into zig-zag chains along the b-axis. The citrates occupy layers parallel to the bc plane, and the ammonium ions link the layers through N-H⋅⋅⋅O hydrogen bonds. In (NH4)3C6H5O7, the hydroxyl group forms a hydrogen bond to a terminal carboxylate, and there is an extensive array of N-H⋅⋅⋅O hydrogen bonds. The energies of the density functional theory-optimized structures lead to a correlation between the energy of an N-H⋅⋅⋅O hydrogen bond and the Mulliken overlap population: E(N-H⋅⋅⋅O) (kcal/mole) = 23.1(overlap)½. Powder patterns of (NH4)H2C6H5O7 and (NH4)3C6H5O7 have been submitted to International Centre for Diffraction Data for inclusion in the powder diffraction file.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.Google Scholar
Andrade, L. C. R., Costa, M. M. R., Paixão, J. A., Santos, M. L., Agostinho Moreira, J., and Almeida, A. (2002). “Crystal structure of diammonium hydrogen-2-hydroxy-1,2,3-propanetricarboxylate, (NH4)2(C6H6O7),Z. Kristallogr. NCS 217, 537538.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Cigler, A. J. and Kaduk, J. A. (2018). “Dilithium (citrate) crystals and their relatives,Acta Cryst. Sect. C 74(10), 11601170.Google Scholar
Dassault Systèmes (2018). Materials Studio 2018 (BIOVIA, San Diego CA).Google Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Amer. Mineral. 22, 446467.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.Google Scholar
Favre-Nicolin, V. and Černý, R. (2002). FOX, “Free Objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: the Powder Diffraction File™,” Powder Diffr. 32(2), 6371.Google Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27(6), 892900.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gong, P. (1980). “Ammonium citrate,” ICDD Grant-in-Aid, PDF entry 00-031-1531.Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.Google Scholar
Kaduk, J. A. (2002). “Use of the inorganic crystal structure database as a problem solving tool,” Acta Cryst. Sect B: Struct. Sci. 58, 370379.Google Scholar
Kaduk, J. A. and Stern, C. (2016a). “Potassium dihydrogen citrate,” CSD Refcodes ZZZEJE01 and ZZZEJE02.Google Scholar
Kaduk, J. A. and Stern, C. (2016b). “Potassium dihydrogen citrate dihydrate,” CSD Refcodes FAFMAD and FAFMAD01.Google Scholar
Kresse, G., and Furthmüller, J. (1996). “Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis Set,” Comput. Mater. Sci. 6, 1550.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Los Alamos National Laboratory Report LAUR 86-784).Google Scholar
Love, W. E. and Patterson, A. L. (1960). “X-ray crystal analysis of the substrates of aconitase. III. Crystallization, cell constants, and space groups of some alkali citrates,” Acta Crystallogr. 13(5), 426428.Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.Google Scholar
Materials Design (2016). MedeA 2.20.4 (Materials Design Inc., Angel Fire NM).Google Scholar
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.Google Scholar
Rammohan, A. and Kaduk, J. A. (2016a). “Sodium potassium hydrogen citrate, NaKHC6H5O7,” Acta Cryst. E 72, 170173.Google Scholar
Rammohan, A. and Kaduk, J. A. (2016b). “Sodium dipotassium citrate, NaK2C6H5O7,” Acta Cryst. E 72, 403406.Google Scholar
Rammohan, A. and Kaduk, J. A. (2016c). “Trisodium citrate, Na3(C6H5O7),” Acta Cryst. E 72, 793796.Google Scholar
Rammohan, A. and Kaduk, J. A. (2016d). “A second polymorph of sodium dihydrogen citrate, NaH2C6H5O7: structure solution from powder diffraction data and DFT comparison,” Acta Cryst. E 72, 854857.Google Scholar
Rammohan, A. and Kaduk, J. A. (2016e). “Crystal structure of anhydrous tripotassium citrate from laboratory X-ray powder diffraction data and DFT comparison,” Acta Cryst. E 72, 11591162.Google Scholar
Rammohan, A., Sarjeant, A. A., and Kaduk, J. A. (2016). “Disodium hydrogen citrate sesquihydrate, Na2HC6H5O7(H2O)1.5,” Acta Cryst. E 72, 943946.Google Scholar
Rammohan, A. and Kaduk, J. A. (2017a). “Crystal structure of dirubidium hydrogen citrate from laboratory X-ray powder diffraction data and DFT comparison,” Acta Cryst. E 73, 9295.Google Scholar
Rammohan, A. and Kaduk, J. A. (2017b). “Crystal structure of trirubidium citrate monohydrate from laboratory X-ray powder diffraction data and DFT comparison,” Acta Cryst. E 73, 227230.Google Scholar
Rammohan, A. and Kaduk, J. A. (2017c). “Crystal structure of trirubidium citrate from laboratory X-ray powder diffraction data and DFT comparison,” Acta Cryst. E 73, 250253.Google Scholar
Rammohan, A. and Kaduk, J. A. (2017d). “Crystal structure of pentasodium hydrogen dicitrate from synchrotron X-ray powder diffraction data and DFT comparison,” Acta Cryst. E 73, 286290.Google Scholar
Rammohan, A. and Kaduk, J. A. (2017e). “Crystal structure of caesium dihydrogen citrate from laboratory X-ray powder diffraction data and DFT comparison,” Acta Cryst. E 73, 133136.Google Scholar
Rammohan, A. and Kaduk, J. A. (2017f). CSD Communication 1525884.Google Scholar
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” accepted by Acta Cryst. Sect. B: Cryst. Eng. Mater./Acta Cryst. Sect. C: Struct. Chem.; hw5048.Google Scholar
Rammohan, A., Sarjeant, A. A., and Kaduk, J. A. (2017a). “Crystal structure of dicaesium hydrogen citrate from laboratory single-crystal and powder X-ray diffraction data and DFT comparison,” Acta Cryst. E 73, 231234.Google Scholar
Rammohan, A., Sarjeant, A. A., and Kaduk, J. A. (2017b). “Tricaesium citrate monohydrate, Cs3C6H5O7·H2O: crystal structure and DFT comparison,” Acta Cryst. E 73, 520523.Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. 20(2), 7983.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.Google Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Cryst. Sect. B: Struct. Sci., Cryst. Eng. Mater., 70(6), 10201032.Google Scholar
Venkateshwarlu, M., Bhaskar Rao, T., and Kishan Rao, K. (1989). “Growth and characterization of triammonium citrate,” Bull. Mater. Sci. 12(2), 146146.Google Scholar
Venkateshwarlu, M., Hussain, K. A., and Bhaskar Rao, T. (1993). “X-ray data for triammonium citrate,” Powder Diffr. 8(3), 173174.Google Scholar
Visser, J. (1979). “Ammonium hydrogen citrate,” ICDD Grant-in-Aid, PDF entry 00-031-1529.Google Scholar
Supplementary material: File

Wheatley and Kaduk supplementary material

Wheatley and Kaduk supplementary material 1

Download Wheatley and Kaduk supplementary material(File)
File 375.9 KB