Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T07:15:53.476Z Has data issue: false hasContentIssue false

Crystal structures of cubic nitroprussides: M[Fe(CN)5NO]·xH2O(M=Fe, Co, Ni). Obtaining structural information from the background

Published online by Cambridge University Press:  01 March 2012

A. Gómez
Affiliation:
Department of Physics, University of Guelph, Guelph, Ontario NIG 2W1, Canada
J. Rodríguez-Hernández
Affiliation:
Institute of Materials Science and Technology, 10400 Havana University, Havana, Cuba
E. Reguera*
Affiliation:
Institute of Materials Science and Technology, 10400 Havana University, Havana, Cuba and Center of Applied Science and Technology of IPN, CICATA-Unidad Legaria, Mexico, D. F.
*
a)Author to whom correspondence should be addressed. Electronic mail: ereguera@yahoo.com

Abstract

A new structural model is proposed for cubic nitroprussides and the crystal structure for the complex salts of Fe(2+), Co(2+), and Ni(2+) refined in that model. In cubic nitroprussides the building unit, [Fe(CN)5NO]2−, and the assembling metal (M=Fe2+,Co2+,Ni2+), have ¾ occupancy with three formula units per cell (Z=3). This leads to certain structural disorder and to different local environments for the outer metal. The crystallographic results are supported by the Mössbauer and infrared data. The XRD powder patterns, index in a cubic cell (Fm3m space group), show a sinuous background because of diffuse scattering from positional disorder of the metal centers. Because of this, the crystal structures were refined allowing the metal centers to move from the (0,0,0) and (0,0,1/2) positions (away from positional symmetry restrictions). The refinement under these conditions leads to excellent agreement factors (Rwp, Rp, S), good pattern background fitting, and produced a refined structural model consistent with the crystal chemistry of nitroprussides. The studied materials are obtained as hydrates. On heating, the crystal water evolves, and below 100°C an anhydrous phase is obtained, preserving the framework of the original hydrates. The loss of the crystal water leads to cell contraction that represents around 2% of cell volume reduction. On cooling down from room temperature to 77 and 12 K, a slight expansion for the -M-N≡C-Fe-C≡N-M- chain length is observed, suggesting that at low temperature and reduction in the metals charge delocalization on the CN bridges takes place. For M=Fe and Co the crystal structure was also refined for the anhydrous phase at 12, 77, and 300 K.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balmaseda, J., Reguera, E., Gómez, A., Roque, J., Vazquez, C., and Autie, M. (2003). “On the microporous nature of transition metal nitroprussides,” J. Phys. Chem. BJPCBFK10.1021/jp027678g 107, 1136011369.CrossRefGoogle Scholar
Benavante, A., de Moran, J. A., and Aymonino, P. J. (1997). “Crystal and anion structure, TGA, DTA and infrared and Raman spectra of manganesse (II) nitroprusside dehydrate, Mn[Fe(CN)5NO]·2H2O,” J. Chem. Cryst.JCCYEV 27, 343352.CrossRefGoogle Scholar
Chapman, K. W., Chupas, P. J., and Kepert, C. J. (2006). “Compositional dependence of negative thermal expansion in the Prussian blue analogues MIIPt IV(CN)6(M=Mn, Fe, Co, Ni, Cu, Zn, Cd),” J. Am. Chem. Soc.JACSAT10.1021/ja060916r 128, 70097014.CrossRefGoogle Scholar
Gulp, J. T., Matranga, C., Smith, M., Bittner, E. W., and Bockrath, B. (2006). “Hydrogen storage properties of metal nitroprussides M[Fe(CN)5NO], (M=Co, Ni),” J. Phys. Chem. BJPCBFK 110, 83258328.Google Scholar
Ferreira, F. F., Granado, E., Carvalho, W. Jr., Kycia, S. W., Bruno, D., and Droppa, R. Jr. (2006). “X-ray powder diffraction beamline at D10B of LNLS: application to the Ba 2FeReO6 double perovskite,” J. Synchrotron Radiat.JSYRES10.1107/S0909049505039208 13, 4653.CrossRefGoogle Scholar
Gómez, A., Reguera, E., and Cranswick, L. M. D. (2001). “The structure of two orthorhombic nitroprussides Cd[Fe(CN)5NO]·2H2O and Zn[Fe(CN)5NO]·2H2O,” PolyhedronPLYHDE10.1016/S0277-5387(00)00564-7 20, 165170.CrossRefGoogle Scholar
Gómez, A., Rodríguez-Hernández, J., and Reguera, E. (2004). “Unique coordination in metal nitroprussides: The structure of Cu[Fe(CN)5NO]·2H2O and Cu[Fe(CN)5NO],” J. Chem. Cryst.JCCYEV 34, 893903.CrossRefGoogle Scholar
Gu, Z.-Z., Sato, O., Iyoda, T., Hashimoto, K., and Fujishima, A. (1996). “Molecular level design of a photoinduced magnetic spin coupling system: Nickel nitroprusside,” J. Phys. Chem.JPCHAX10.1021/jp962190z 100, 1828918291.CrossRefGoogle Scholar
Gu, Z.-Z., Sato, O., Iyoda, T., Hashimoto, K., and Fujishima, A. (1997). “Spin switching effect in nickel nitroprusside: design of a molecular spin device based on spin exchange interaction,” Chem. Mater.CMATEX10.1021/cm9606383 9, 10921097.CrossRefGoogle Scholar
Gütlich, P., Garcia, Y., and Woike, Th. (2001). “Photoswitchable coordination compounds,” Coord. Chem. Rev.CCHRAM 219–221, 839879.CrossRefGoogle Scholar
Herren, F., Fischer, P., Ludi, A., and Halg, W. (1980). “Neutron diffraction study of Prussian blue, Fe4[Fe(CN)6]3·H2O. Location of water molecules and long-range magnetic order,” Inorg. Chem.INOCAJ10.1021/ic50206a032 19, 956959.CrossRefGoogle Scholar
Inoue, H., Narino, S., Yoshioka, N., and Fluck, E. (2000). “Thermal decomposition of Prussian blue analogues of the Type Fe[Fe(CN)5NO],” Z. Naturforsch., B: Chem. Sci.ZNBSEN 55, 685690.CrossRefGoogle Scholar
Larson, A. C., and Von Dreele, R. B. (2000). “General Structure Analysis System (GSAS),” Report LAUR 86748, Los Alamos National Laboratory.Google Scholar
Ludi, A., and Gudel, H. U. (1973). “Structural chemistry of polynuclear transition metal cyanides,” Struct. Bonding (Berlin)STBGAG 14, 121.CrossRefGoogle Scholar
Martínez-García, R., Knobel, M., and Reguera, E. (2006). “Modification of the magnetic properties in molecular magnets based on Prussian blue analogues through adsorbed species,” J. Phys.: Condens. MatterJCOMEL 18, 1124311254.Google Scholar
Mullica, D. F., Sappenfield, E. L., Tippin, D. B., and Leschnitzer, D. H. (1989). “Synthesis, spectroscopic studies and crystal structure analysis of zinc nitrosylpentacyanoferrate trihydrate, Zn[Fe(CN)5NO]·3H2O,” Inorg. Chim. ActaICHAA310.1016/S0020-1693(00)80882-8 164, 99103.CrossRefGoogle Scholar
Mullica, D. F., Tippin, D. B., and Sappenfield, E. L. (1990). “The crystal structures of two nitroprussides: Mn[Fe(CN)5NO]·3H2O and Cd[Fe(CN)5NO]·3H2O,” Inorg. Chim. ActaICHAA310.1016/S0020-1693(00)80287-X 174, 129135.CrossRefGoogle Scholar
Mullica, D. F., Tippin, D. B., and Sappenfield, E. L. (1991a). “The crystal structure analysis of iron nitroprusside, Fe[Fe(CN)5NO]·3H2O,” J. Crystallogr. Spectrosc. Res.JCREDB10.1007/BF01158980 21, 8185.CrossRefGoogle Scholar
Mullica, D. F., Tippin, D. B., and Sappenfield, E. L. (1991b). “Synthesis, spectroscopic studies and X-ray crystal structure analysis of cobalt nitroprusside, Co[Fe(CN)5NO]·5H2O,” J. Coord. Chem.JCCMBQ 24, 8391.CrossRefGoogle Scholar
Mullica, D. F., Tippin, D. B., and Sappenfield, E. L. (1992). “The Jahn-Teller effect in the molecular structure of copper nitroprusside, Cu[Fe(CN)5NO]·2H2O,” J. Coord. Chem.JCCMBQ 25, 175182.CrossRefGoogle Scholar
Mullica, D. F., Wardojo, T. A., and Sappenfield, E. L. (1993). “Synthesis, spectroscopic, and structural studies of two mixed transition metal complexes,” J. Solid State Chem.JSSCBI10.1006/jssc.1993.1298 106, 379387.CrossRefGoogle Scholar
Reguera, E., Fernández, J., Miranda, J., and Dago, A. (1993). “On the structure and Mössbauer Spectra of ferrous nitroprusside,” Hyperfine Interact.HYINDN10.1007/BF02320293 77, 110.CrossRefGoogle Scholar
Reguera, E., Dago, A., Gómez, A., and Bertrán, J. F. (1996). “Structural changes in insoluble metal nitroprussides on ageing,” PolyhedronPLYHDE10.1016/0277-5387(95)00582-X 15, 31393145.CrossRefGoogle Scholar
Reguera, E., Balmaseda, J., Rodríguez-Hernández, J., Autie, A., Gordillo, A., and Yee-Madeira, H. (2004). “Behavior of microporous nitroprussides in presence of ammonia,” J. Porous Mater.JPMAFX 11, 219228.CrossRefGoogle Scholar
Rodríguez-Hernández, J., Reguera, E., and Gómez, A. (2005). “Crystal structure of orthorhombic ferrous nitroprusside: Fe[Fe(CN)5NO]·2H2O,” Powder Diffr.PODIE210.1154/1.1872874 20, 2732.CrossRefGoogle Scholar
Zhang, Y. (1982). “Electronegativities of elements in valence states and their applications. 2. A scale for strengths of Lewis acids,” Inorg. Chem.INOCAJ10.1021/ic00141a006 21, 38893893.CrossRefGoogle Scholar