Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T08:50:23.439Z Has data issue: false hasContentIssue false

Crystal structures of N,N′-bis(thiophen-2-ylmethyl)ethane-1,2-diaminium hydrochloride and of its [AuCl4] salt solved by powder diffraction

Published online by Cambridge University Press:  15 August 2014

Silvioney A. Silva
Affiliation:
LQBin, Laboratório de Química BioInorgânica, Departamento de Química, Instituto de Ciências Exatas, UFJF – 36036-330, Juiz de Fora, MG, Brazil
Norberto Masciocchi
Affiliation:
Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, 22100Como, Italy
Alexandre Cuin*
Affiliation:
LQBin, Laboratório de Química BioInorgânica, Departamento de Química, Instituto de Ciências Exatas, UFJF – 36036-330, Juiz de Fora, MG, Brazil
*
a)Author to whom correspondence should be addressed. Electronic mail: alexandre.cuin@ufjf.edu.br, alexandre_cuin@yahoo.com

Abstract

Preparation, analytical characterization, and crystal structures of N,N′-bis(thiophen-2-ylmethyl)ethane-1,2-diaminium hydrochloride (1) and of its gold derivative, N,N′-bis(thiophen-2-ylmethyl)ethane-1,2-diaminium tetrachloroaurate(III) (2) are reported. Compound (1) was obtained by reduction of the Schiff base N,N′-bis(thiophen-2-ylmethyl)ethane-1,2-diamine followed by HCl solution addition, whereas compound (2) was prepared reacting (1) with K[AuCl4] in aqueous solution. Compound (1) crystallizes in the orthorhombic system with space group Iba2 and cell parameters a = 29.856(1), b = 5.1372(2), and c = 10.1635(4) Å. Crystals of (2) belong to the monoclinic system with space group P21/c and cell parameters a = 11.0829(1), b = 9.5852(1), c = 11.6054(2) Å, and β = 75.49(1)°. Both structures contain diprotonated organic moieties, counterbalanced by hydrogen-bonded Cl, or [AuCl4] ions, in compounds (1) and (2), respectively.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chieng, N., Rades, T., and Aaltonen, J. (2011). “An overview of recent studies on the analysis of pharmaceutical polymorphs,” J. Pharm. Biomed. 55, 618644.Google Scholar
Coelho, A. A. (2000). “Whole-profile structure solution from powder diffraction data using simulated annealing,” J. Appl. Crystallogr. 22, 899908.Google Scholar
Cuin, A., Pereira, G. A., Bortoluzzi, A. J., and Massabni, A. C. (2013). “Characterization, and crystal structure of thiophenyl-2-methylidene-2-aminophenol,” J. Struct. Chem. 54, 269273.Google Scholar
Fonteh, P. N., Keter, F. K., Meyer, D., Guzei, I. A., and Darkwa, J. (2009). “Tetra-chloro-(bis(3,5-dimethylpyrazolyl)methane)gold(III) chloride: and HVI-1 reverse transcriptase and protease inhibitor,” J. Inorg. Biochem. 103, 190194.Google Scholar
Hamalainen, R., Lehtinen, M., and Ahlgren, M. (1985). “Crystal and molecular-structure of N,N′-bis(1-hydroxy-2-butyl)ethylenediamine dihydrochloride,” Arch. Pharm. 318, 2630.Google Scholar
Keller, E. (1986). “SCHAKAL86,” Chem. Unserer Zeit 20, 178181.Google Scholar
Lasocha, B., Gawel, B., and Lasocha, W. (2006). “Powder diffraction investigations of some organic hydrochlorides,” Powder Diffr. 21, 310313.Google Scholar
Masciocchi, N., and Sironi, A. (1997). “The contribution of powder diffraction methods to structural co-ordination chemistry,” J. Chem. Soc., Dalton Trans. 46434650.Google Scholar
Masciocchi, N., Galli, S., and Sironi, A. (2005). “X-ray powder diffraction characterization of polymeric metal diazolates,” Commun. Inorg. Chem. 27, 137.Google Scholar
Masciocchi, N., Aulisio, A., Bertolini, G. Sada, M., Garis, F., and Malpezzi, L. (2013). “Disclosing the extensive crystal chemistry of Ivabradine hydrochloride, in its pure and solvated phases,” Powder Diffr. 28, 200206.Google Scholar
Mc Murdie, H. F., Morris, M. C., Evans, E. H., Paretzkin, B., and Wong-Ng, W. (1986). “Methods of producing standard X-ray diffraction powder patterns,” Powder Diffr. 1, 4043.Google Scholar
Mercury CSD Version 3.3, Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008) “New features for the visualization and investigation of crystal structures”, J. Appl. Crystallogr. 41, 466470.Google Scholar
Mota, V. Z., de Carvalho, G. S. G., Corbi, P. P., Bergamini, F. R. G., Formiga, A. L. B., Diniz, R., Freitas, M. C. R., da Silva, A. D., and Cuin, A. (2012). “Crystal structure and theoretical studies of the keto-enol isomerism of N,N′-bis(salicylidene)-o-phenylenediamine (salophen),” Spectrochim. Acta A 99, 110115.Google Scholar
Pecharsky, V. K. and Zavalij, P. Y. (2003). Fundamentals of Powder Diffraction and Structural Characterization of Materials (Kluwer Academic, USA), p. 208.Google Scholar
Srimurugan, S., Suresh, P., Babu, B., and Pati, H. N. (2008). “Chiral macrocyclic schiff bases: an overview. mini-rev,” Org. Chem. 5, 228242.Google Scholar
TOPAS-R (2005). Version 3, General profile and structure analysis software for powder diffraction data, Bruker AXS, Karlsruhe, Germany.Google Scholar
Wang, D. Q., Wang, Q., and Xiao, L. J. (2007). “ N,N′-bis(2-thienylmethylene)ethane-1,2-diamine,” Acta Crystallogr. E 63, o4865.Google Scholar
Supplementary material: File

Silva Supplementary Material

Silva Supplementary Material 2

Download Silva Supplementary Material(File)
File 15.1 KB
Supplementary material: File

Silva Supplementary Material

Silva Supplementary Material 1

Download Silva Supplementary Material(File)
File 14.8 KB