Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T09:42:04.307Z Has data issue: false hasContentIssue false

Crystal structures of some manganese(II) and cadmium hexacyanoferrates (II,III) and structural transformations related to the sorption of Cesium

Published online by Cambridge University Press:  06 March 2012

R. Martínez-García
Affiliation:
Institute of Materials and Reagents, University of Havana, 10400 Havana, Cuba
E. Reguera*
Affiliation:
Institute of Materials and Reagents, University of Havana, 10400 Havana, Cuba
J. Rodriguez
Affiliation:
Institute of Materials and Reagents, University of Havana, 10400 Havana, Cuba
J. Balmaseda
Affiliation:
Institute of Materials and Reagents, University of Havana, 10400 Havana, Cuba
J. Roque
Affiliation:
Institute of Materials and Reagents, University of Havana, 10400 Havana, Cuba
*
a)Author to whom correspondence should be addressed; Electronic mail: edilso@fisica.uh.cu

Abstract

Mn2+ and Cd2+ form a family of isostructural hexacyanoferrates(II,III). Their crystal structures, including those of mixed compositions containing K+ and Cs+ as charge balance cations, were resolved and refined from XRD powder patterns. The crystal structures of M3[Fe(CN)6]2⋅xH2O and MCs2[Fe(CN)6] (where M=Mn, Cd) were refined in the space group Fm3m. The mixed salts, MK2[Fe(CN)6]⋅2H2O, were found to be orthorhombic (space group Pmn21). The orthorhombic structure results from a local distortion due to monohydrated potassium ions located in interstitial sites. On ionic exchange in an aqueous solution containing Cs+, the orthorhombic distortion disappears and the cubic cell is obtained. Cs+ is a large ion, which practically fills the available interstitial voids stabilizing the cubic structure. In solutions of K+ and Cs+ the single salts, M2[Fe(CN)6]⋅8H2O (monoclinic P21/n) also transform, in this case liberating M2+ ions and forming the corresponding mixed salts. An analogous but slow structural transformation was also observed in the anhydrous forms of these single salts. These structural transformations could be relevant to the use of these compounds as ion exchangers and particularly for the sorption of 137Cs+ from radioactive waste solutions. The XRD data were complemented with structural information from infrared (IR), Mössbauer and water vapor adsorption techniques. © 2004 International Centre for Diffraction Data.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adekola, F., Fedoroff, M., Ayrault, S., Loss-Neskovic, C., Garnier, E., Fedoroff, M., and Yu, L. T. (1997). “Interaction of Silver ions in solutions with Copper hexacyanoferrates (II) Cu2IIFe(CN)6,J. Solid State Chem. JSSCBI 132, 399406. jss, JSSCBI Google Scholar
Ayrault, S., Jimenez, B., Garnier, E., Fedoroff, M., Jones, D. J., and Loss-Neskovic, C. (1998). “Sorption mechanisms of Cesium on Cu2IIFe(CN)6 and Cu3II[Fe(CN)6]2 hexacyanoferrates and their relation to the crystalline structure,” J. Solid State Chem. JSSCBI 141, 475485. jss, JSSCBI Google Scholar
Balmaseda, J., Reguera, E., Gómez, A., Díaz, B., and Autie, M. (2002). “Evaluation of cadmium hexacyanoferrate (III) as a microporous material,” Microporous Mesoporous Mater. MIMMFJ 54, 285292. a9k, MIMMFJ Google Scholar
Beall, G. W., Milligan, W. O., Korp, J., and Bernal, I. (1977). “Crystal Structure of Mn3[Co(CN)6]2⋅12H2O and Cd3[Co(CN)6]2⋅12H2O by neutron and X-ray diffraction,” Inorg. Chem. INOCAJ 16 (11), 27152718. ino, INOCAJ Google Scholar
Boxhoorn, G., Moolhuysen, J., Coolegem, J. P. G., and van Santen, R. A.(1985). “Cyanometallates: An underestimated class of molecular sieves,” J. Chem. Soc., Chem. Commun. 1305–1307.Google Scholar
Brauer, G., Handbook of Preparative Inorganic Chemistry, 2nd ed., Vol. 2, (Academic, New York, 1965), p. 1373.Google Scholar
Byker, H. J. (1994), edited by Ho, K. C., and MacArthur, D. A., in Electrochromic Materials II, vol. 94-2 (The Electrochemical Society, Pennigton, NJ, 1994), pp. 3–12.Google Scholar
Cartraud, P., Cointot, A., and Renaud, A. (1981). “Zeolitic properties of mixed hexacyanoferrates(II): K2Zn3[Fe(CN)6]2⋅xH2O,J. Chem. Soc., Faraday Trans. 1 JCFTAR 77, 15611567. jfy, JCFTAR Google Scholar
Dunbar, K. R., and Heintz, R. A. (1997). “Chemistry of transition metal cyanide compounds: Modern perspectives,” Prog. Inorg. Chem. PIOCAR 45, 283391. prg, PIOCAR Google Scholar
Entley, W. R., and Girolami, G. S. (1995). “High-temperature molecular magnets based on cyanovanadate building blocks: Spontaneous magnetization at 230 K,” Science SCIEAS 268, 397400. sci, SCIEAS Google Scholar
Ferlay, S., Mallah, T., Ouahes, R., Veillet, P., and Verdaguer, M. (1995). “A room-temperature organometallic magnet based on Prussian blue,” Nature (London) NATUAS 378, 701703. nat, NATUAS Google Scholar
Fernandez, J., and Reguera, E. (1997). “Mechano-chemical reactions in KBr pressed disks,” Solid State Ionics SSIOD3 93, 139147. ssi, SSIOD3 Google Scholar
Gomez, A., and Reguera, E. (2001). “Structure of cadmium hexacyanometallates(II): Cd2[Fe(CN)6]⋅8H2O, Cd2[Ru(CN)6]⋅8H2O, Cd2[Os(CN)6]⋅8H2O,Int. J. Inorg. Mater. IJIMCR 3 (7), 10451051. a83, IJIMCR Google Scholar
Gomez, A., Lara, V., Bosch, P., and Reguera, E. (2002). “Structural refinement of two manganous hexacyanometallates (II): Mn2[Fe(CN)6]⋅8H2O and Mn2[Os(CN)6]⋅8H2O,Powder Diffr. PODIE2 17, 144149. pdj, PODIE2 Google Scholar
Gomez, A. (2002). “Crystal structure of molecular materials from XRD powder patterns,” Ph.D. Thesis, Havana University, July, 2002.Google Scholar
Gravereau, P., and Garnier, E. (1984). “Structure de la phase cubique de l’Hexacyanoferrate (III) de zinc,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 40, 13061309. acg, ACSCEE Google Scholar
Herren, F., Fischer, P., Ludi, A., and Halg, W. (1980). “Neutron diffraction study of prussian blue, Fe4[Fe(CN)6]3⋅xH2O. Location of water molecules and long-range magnetic order,” Inorg. Chem. INOCAJ 19, 956959. ino, INOCAJ Google Scholar
Holmes, S. D., and Girolami, G. S. (1999). “Sol-Gel synthesis of KVII[CrIII(CN)6] 2H2O: A crystalline molecule-based magnet with a magnetic ordering temperature above 100 °C,” J. Am. Chem. Soc. JACSAT 121, 55935594. acs, JACSAT Google Scholar
Kuyper, J., and Boxhoorn, G. (1987). “Hexacyanometallate salts used as alkene-oxide polymerization catalysts and molecular sieves,” J. Catal. JCTLA5 105, 163174. jtl, JCTLA5 CrossRefGoogle Scholar
Louer, D., and Vargas, R. (1982). “Indexation automatique des diagrammes de poudre par dichotomies successives,” J. Appl. Crystallogr. JACGAR 15, 542545. acr, JACGAR Google Scholar
Ludi, A., and Gudel, H. U. (1973). “Structural chemistry of polynuclear transition metal cyanides,” Struct. Bonding (Berlin) STBGAG 14, 121. sbb, STBGAG Google Scholar
Mikhailov, O. V. (1991). “Complexing processes on the immobilized matrices of hexacyanoferrate(II) copper(II) and nitrogen-sulfur-containing ligands in thin gelatin layer,” Monatsch. Chem. MOCMB7 122, 595603. mnc, MOCMB7 Google Scholar
Nakamoto, K. (1986). Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1986), p. 484.Google Scholar
Neff, V. D. (1985). “Some performance characteristics of a Prussian blue battery,” J. Electrochem. Soc. JESOAN 132, 13821384. jes, JESOAN Google Scholar
Pecharsky, V., and Zavalij, P., Fundamentals of Powder Diffraction and Structural Characterization of Materials (Kluwer Academic Publishers, Dordrecht, 2003).Google Scholar
Reguera, E., Fernandez, J., Diaz, C., and Molerio, J. (1992). “Behaviour of Prussian Blue during its interaction with ozone,” Hyperfine Interact. HYINDN 73, 285294. hfi, HYINDN Google Scholar
Reguera, E., Balmaseda, J., Quintana, G., Gomez, A., and Fernandez, J. (1998). “Transformation of cadmium ferricyanide by heating, milling and sonication,” Polyhedron PLYHDE 17, 23532361. ply, PLYHDE Google Scholar
Reguera, E., Fernandez, J., and Balmaseda, J. (1999). “The existence of ferrous ferricyanide,” Transit. Met. Chem.ZZZZZZ 24, 648656.Google Scholar
Reguera, E., Gomez, A., Balmaseda, J., Contreras, G., and Escamilla, A. (2001). “Structural characterization of cadmium hexacyanometallates (II) and related complexes,” Struct. Chem. STCHES 12, 5967. stc, STCHES Google Scholar
Retzlaff, C. (1987). “Nitroprussiate ein-und zweiwertiger kationen,” Ph.D. thesis, Universitat zu Köln, Germany.Google Scholar
Roberts, L. (1987). “Radiation accident grips Goiana,” Science SCIEAS 238, 10281031. sci, SCIEAS CrossRefGoogle Scholar
Rodriguez-Carvajal, J., FULLPROF 98 program (1998). Institute Leon Brillouin, Saclay, France.Google Scholar
Sato, O., Iyoda, T., Fujishima, A., and Hashimoto, K. (1996). “Photo-induced magnetization of a cobalt iron cyanide,” Science SCIEAS 272, 704705. sci, SCIEAS Google Scholar
Sharpe, A. G. (1976). The Chemistry of the Cyano Complexes of Transition Metals (Academic Press, New York, London), Chap. VII.Google Scholar
Sing, K. W., Everett, D. H., Houl, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., and Siemeniewska, T. (1985). “Reporting physisorption data for Gas/Solid system with special reference to the determination of surface area and porosity,” Pure Appl. Chem. PACHAS 57:4, 603619. pac, PACHAS Google Scholar
Verdaguer, M. (1996). “Molecular electronic emerges from molecular magnetism,” Science SCIEAS 272, 698699. sci, SCIEAS Google Scholar
Wencker, D., Spiess, B., and Laugel, P. (1990). “Influence of hexacyanoferrate(II) based treatments upon the elimination of heavy metal traces in wine. II. The case of Cadmium,” Food Addit. Contam. FACOEB 7, 375379. 4nx, FACOEB Google Scholar
Zhang, Y. (1982). “Electronegativities of elements in valence states and their applications. 2. A scale for strenghts of Lewis acids,” Inorg. Chem. INOCAJ 21, 38893893. ino, INOCAJ CrossRefGoogle Scholar