Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T07:47:25.642Z Has data issue: false hasContentIssue false

Determination of equilibrium transformation temperatures Ae3 and Ae1 for low-carbon steels using the in situ high-temperature X-ray diffraction technique

Published online by Cambridge University Press:  29 February 2012

F. Equihua*
Affiliation:
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Saltillo, Carretera Saltillo-Monterrey Km. 13, Molinos del Rey, P.O. Box 663, Saltillo, Coahuila 25900, Mexico
A. Salinas
Affiliation:
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Saltillo, Carretera Saltillo-Monterrey Km. 13, Molinos del Rey, P.O. Box 663, Saltillo, Coahuila 25900, Mexico
*
a)Author to whom correspondence should be address. Electronic mail: fabianequihua@gmail.com

Abstract

This paper describes a method to determine the equilibrium transformation temperatures in low C steels using the in situ high-temperature X-ray diffraction technique. The samples were heated and then cooled from 1000 to 720 °C in a stepwise manner decreasing to −10 °C. Austenite and ferrite fractions were determined by a quantitative method using the integrated intensities of austenite (111)γ and ferrite (110)α peaks from X-ray diffraction patterns. The effect of the temperature on interplanar d spacings of (111) and (110) crystallographic planes was determined using 2θ maximum positions of the austenite (111)γ and ferrite (110)α peaks. The equilibrium transformation temperatures were determined to be Ae1=720 °C and Ae3=950 °C. The results are in excellent agreement with those obtained by dilatometric analysis and Thermo-Calc phase diagram simulation software. In addition, the results were supported by microstructural observations: the formation of thin ferrite films (5–10 μm) was observed at temperatures near to experimental Ae3.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, E., Manzoor, T., Liaqat, A. K., and Akhter, J. I. (2000). “Effect of microvoid formation on the tensile properties of dual-phase steel,” J. Mater. Eng. Perform. JMEPEG 9, 306310 .10.1361/105994900770345962CrossRefGoogle Scholar
Ahmad, E. and Priestner, R. (1998). “Effect of rolling in the intercritical region on the tensile properties of dual-phase steel,” J. Mater. Eng. Perform. JMEPEG 7, 772776 .10.1361/105994998770347341CrossRefGoogle Scholar
Ali, A. and Bhadeshia, H. K. D. H. (1990). “Nucleation of Widmanstitten ferrite,” Mater. Sci. Technol. MSCTEP 6, 781784.CrossRefGoogle Scholar
Anderson, W. and Mehl, R. (1945). “Recrystallization of Al in terms of the rate of nucleation and growth,” Trans. AIME TAIMAF 161, 140172.Google Scholar
Avrami, M. (1939). “Kinetics of phase change I. General theory,” J. Chem. Phys. JCPSA6 7, 11031112 .10.1063/1.1750380CrossRefGoogle Scholar
Avrami, M. (1940). “Kinetics of phase change II. Transformation-time relations for random distribution of nuclei,” J. Chem. Phys. JCPSA6 8, 212224 .10.1063/1.1750631CrossRefGoogle Scholar
Avrami, M. (1941). “Kinetics of phase change III. Granulation, phase change on microstructures,” J. Chem. Phys. JCPSA6 9, 177184 .10.1063/1.1750872CrossRefGoogle Scholar
Ayturk, M. E., Payzant, E. A., Speakman, S. A., and Ma, Y. H. (2008). “Isothermal nucleation and growth kinetics of Pd/Ag alloy phase via in situ time-resolved high-temperature X-ray diffraction (HTXRD) analysis,” J. Membr. Sci. JMESDO 316, 97111 .10.1016/j.memsci.2007.09.038CrossRefGoogle Scholar
Bhange, D. S. and Ramaswamy, V. (2007). “High temperature thermal expansion behavior of silicalite-1 molecular sieve: In situ HTXRD study,” Microporous Mesoporous Mater. MIMMFJ 103, 235242 .10.1016/j.micromeso.2007.02.013CrossRefGoogle Scholar
Borgenstam, A. and Hillert, M. (2000). “Massive transformation in the Fe-Ni system,” Acta Mater. ACMAFD 48, 27652775 .10.1016/S1359-6454(00)00102-6CrossRefGoogle Scholar
Choi, S. Y., Mamak, M., Speakman, S., Chopra, N., and Ozin, G. A. (2005). “Evolution of nanocrystallinity in periodic mesoporous anatase thin films,” Small SMALBC 1, 226232 .10.1002/smll.200400038CrossRefGoogle ScholarPubMed
Cota, A. B., Oliveira, F. L. G., and Andrade, M. S. (2007). “Kinetics of austenite formation during continuous heating in a low carbon steel,” Mater. Charact. MACHEX 58, 256261 .10.1016/j.matchar.2006.04.027Google Scholar
Cowley, A., Abushosha, R., and Mintz, B. (1998). “Influence of Ar3 and Ae3 temperatures on hot ductility of steels,” Mater. Sci. Technol. MSCTEP 14, 11451153.CrossRefGoogle Scholar
Cullity, B. D. (1978). Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA), pp. 81145.Google Scholar
GBC (2009). SIETRONICS TRACES XRD analysis software Version 3.0 〈www.gbcsci.com/products/xrd/software.asp〉.Google Scholar
Ghassemi, M. and Salinas, A. (2009). “Determinación de las temperaturas de transformación de un acero eléctrico,” M.S. thesis, Centro de Investigación y de Estudios Avanzados del IPN.Google Scholar
Ikeda, T., Okazaki, J., Tanak, P. D. A., Suzuki, M., and Toshishige, M. F. (2009). “In situ high-temperature X-ray diffraction study of thin palladium/α-alumina composite membranes and their hydrogen permeation properties,” J. Membr. Sci. JMESDO 335, 126132 .10.1016/j.memsci.2009.03.009Google Scholar
Inden, G. (2003). Thermodynamics, Microstructure and Plasticity, edited by Finel, A., Mazière, D., and Véron, M. (Kluwer, Dordrecht), pp. 135153.Google Scholar
Johnson, W. and Mehl, R. (1939). “Reaction kinetics in processes of nucleation and growth,” Trans. AIME TAIMAF 135, 416458.Google Scholar
Jonas, J. and Liang, Y. (2002). “Role of cross-slip in determining orientation relationships during the γ-to-α transformation,” Mater. Sci. Forum MSFOEP 408–412, 17891790 .10.4028/www.scientific.net/MSF.408-412.1789CrossRefGoogle Scholar
Kim, S., Kim, K., Kacynski, R. M., Acher, R. D., Yoon, S., Anderson, T. J., Payzant, E. A., and Li, S. S. (2005). “Reaction kinetics of CuInSe2 thin films grown from bilayer InSe/CuSe precursors,” J. Vac. Sci. Technol. A JVTAD6 23, 310315 .10.1116/1.1861051CrossRefGoogle Scholar
Kolmogorov, A. (1937). “A statistical theory for the recrystallization of metals,” Izv. Akad. Nauk. SSSR, Met. IZNMAQ 1, 355359.Google Scholar
Krielaart, G. P., Sietsma, J., and Van Der Zwaag, S. (1997). “Ferrite formation in Fe-C alloys during austenite decomposition under non-equilibrium interface conditions,” Mater. Sci. Eng., A MSAPE3 237, 216223 .10.1016/S0921-5093(97)00365-1CrossRefGoogle Scholar
Kurdjumov, G. and Sachs, G. (1930). “Uber den mechanismus det stahlhartung,” Z. Phys. ZEPYAA 64, 325343 .10.1007/BF01397346CrossRefGoogle Scholar
Lind, C., Angus, P., Wilkinson, P., Rawn, J., and Payzant, E. A. (2002). “Kinetics of the cubic trigonal transformation in ZrMo2O8 and their dependence on precursor chemistry,” J. Mater. Chem. JMACEP 12, 990994 .10.1039/b108350nCrossRefGoogle Scholar
Mahesh, K. K., Uchil, J., and Braz Fernandes, F. M. (2007). “X-ray diffraction study of the phase transformations in NiTi shape memory alloy,” Mater. Charact. MACHEX 58, 243248 .10.1016/j.matchar.2006.04.022Google Scholar
Messien, P., Herman, J. C., and Greday, T. (1981). Fundamentals of Dual Phase Steels, edited by Kot, R. A. and Bramfitt, B. L. (TMS-AIME, Warrendale, PA), pp. 161178.Google Scholar
Mintz, B., Abushosha, R., and Shaker, M. (1993). “Influence of deformation-induced ferrite, grain-boundary sliding, and dynamic recrystallization on hot ductility of 0.1–0.75 % C steels,” Mater. Sci. Technol. MSCTEP 9, 907914.CrossRefGoogle Scholar
Mintz, B., Yue, S., and Jonas, J. J. (1991). “Hot ductility of steels and its relationship to the problem of transverse cracking during continuous-casting,” Int. Mater. Rev. INMREO 36, 187217.CrossRefGoogle Scholar
Morra, P. V., Böttger, A. J., and Mittemeijer, E. J. (2001). “Decomposition of iron-based martensite: A kinetic analysis by means of different scanning calorimetry and dilatometry,” J. Therm Anal. Calorim. JTACF7 64, 905.10.1023/A:1011514727891CrossRefGoogle Scholar
Prado, J. M., Catalan, J. J., and Marsal, M. (1990). “Dilatometric study of isothermal phase transformation in a C-Mn steel,” J. Mater. Sci. JMTSAS 25, 19391946 .10.1007/BF01045746CrossRefGoogle Scholar
Ramaswamy, V., Jagtap, N., Bhagwat, M., and Awati, P. (2005). “Characterization of nanocrystalline anatase titania: An in situ HTXRD study,” Thermochim. Acta THACAS 427, 3741 .10.1016/j.tca.2004.08.011Google Scholar
Rashid, M. S. and Davenport, A. T. (Eds.) (1979). “Formable HSLA and dual phase steels,” HSLA and Dual-Phase Steels, Ed. by Davenport, A. T. (AIME, New York), pp. 124.Google Scholar
Reed, R. C. and Bhadeshia, H. K. D. H. (1992). “Kinetics of reconstructive austenite to ferrite transformation in low alloy steels,” Mater. Sci. Technol. MSCTEP 8, 421435.CrossRefGoogle Scholar
Sarwar, M. and Priestner, R. (1996). “Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel,” J. Mater. Sci. JMTSAS 31, 20912095 .10.1007/BF00356631CrossRefGoogle Scholar
Sietsma, J. and Van Der Zwaag, S. (2004). “A concise model for mixed-mode phase transformations in the solid state,” Acta Mater. ACMAFD 52, 41434152 .10.1016/j.actamat.2004.05.027CrossRefGoogle Scholar
Sommer, F., Liu, Y., Wang, D., and Mittemeijer, E. J. (2008). “Isothermal austenite-ferrite transformation of Fe–0.04 at. % C alloy: Dilatometric measurement and kinetic analysis,” Acta Mater. ACMAFD 56, 38333842 .10.1016/j.actamat.2008.04.015Google Scholar
Speich, G. R. and Miller, R. I. (1979). “Mechanical properties of ferrite martensite steel,” in Structures and Properties of Dual Phase Steels, edited by Kot, R. A. and Morris, J. W. (TMS-AIME, Warrendale, PA), pp. 145182.Google Scholar
Steven, W. S. and Haynes, A. G. (1956). “The temperature of formation of martensite and bainite in steels,” J. Iron Steel Inst., London JISIAX 183, 349.Google Scholar
Svoboda, J., Gamsjager, E., Fischer, F. D., and Fratzl, P. (2004). “Application of the thermodynamical extremal principle to the diffusional phase transformations,” Acta Mater. ACMAFD 52, 959967 .10.1016/j.actamat.2003.10.030CrossRefGoogle Scholar
Tamura, I., Sekine, H., Tanaka, T., and Ouchi, C. (1988). Thermomechanical Processing of High Strength Low Alloy Steels (Butterworth-Heinemann, New York), pp. 162.Google Scholar
Teresiak, A., Gebert, A., Savyak, M., Uhlemann, M., Mickel, Ch., and Mattern, N. (2005). “In situ high temperature XRD studies of the thermal behaviour of the rapidly quenched Mg77Ni18Y5 alloy under hydrogen,” J. Alloys Compd. JALCEU 398, 156164 .10.1016/j.jallcom.2005.03.003CrossRefGoogle Scholar
Thermo-Calc Software AB (2006). The Phase Diagram in Multicomponents Alloys (R Foundation of Computational Thermodynamics, Stockholm).Google Scholar
Tsotsis, T. T., Yang, W., Kim, Y., Liu, P. K. T., and Sahimi, M. (2002). “A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide,” Chem. Eng. Sci. CESCAC 57, 29452953 .10.1016/S0009-2509(02)00185-9Google Scholar
Yada, H., Li, C. M., and Yamagata, H. (2000). “Dynamic γ→α transformation during hot deformation in iron-nickel-carbon alloys,” ISIJ Int. IINTEY 40, 200206 .10.2355/isijinternational.40.200CrossRefGoogle Scholar
Yunxu, L. (1981) Principles of Heat Treatment (Mechanical Industry Press, Beijing), pp. 76.Google Scholar