Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T04:11:30.371Z Has data issue: false hasContentIssue false

Grazing excidence diffraction versus grazing incidence diffraction for strain/stress evaluation in thin films

Published online by Cambridge University Press:  10 January 2013

Anouar Njeh
Affiliation:
Technische Universität Darmstadt, FB Material und Geowissenschaften, Petersenstr. 23, D-64287 Darmstadt, Germany
Thomas Wieder
Affiliation:
Technische Universität Darmstadt, FB Material und Geowissenschaften, Petersenstr. 23, D-64287 Darmstadt, Germany
Hartmut Fuess
Affiliation:
Technische Universität Darmstadt, FB Material und Geowissenschaften, Petersenstr. 23, D-64287 Darmstadt, Germany

Abstract

The reflection shift δ2Θ caused by a radial shift δr of the sample away from its tangential position at the focusing circle is examined for grazing incidence diffraction and grazing excidence diffraction. Experimental results for residual strain/stress evaluation on thin films using a Bragg–Brentano diffractometer with a grazing incidence equipment are presented. Grazing excidence diffraction is less sensitive to δr than grazing incidence diffraction.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banerjee, R.L., and Richard, A. (1994). “A curved vacuum deposited thin film sample holder for Seemann-Bohlin diffractometer,” Z. Kristallogr. 209, 539540.CrossRefGoogle Scholar
Feder, R., and Berry, S. (1970). “Seemann–Bohlin X-ray diffractometer for thin films,” J. Appl. Crystallogr. 3, 550577.CrossRefGoogle Scholar
Fewster, P.F. (1996). “X-ray analysis of thin films and multilayers,” Rep. Prog. Phys. 59, 13391407.CrossRefGoogle Scholar
Flinn, P.A., and Waychunas, G.A. (1988). “A new x-ray diffractometer for thin-film texture, strain, and phase characterization,” J. Vac. Sci. Technol. B B6, 17491755.CrossRefGoogle Scholar
Goehner, R.P., and Eatough, M.O. (1992). “A study of grazing incident configurations and their effect on X-ray diffraction data,” Powder Diffr. 7, 25.CrossRefGoogle Scholar
Horii, Y., Tomita, H., and Komiya, S. (1995). “New diffractometer for thin-film structure analysis under grazing incidence condition,” Rev. Sci. Instrum. 66, 13701372.CrossRefGoogle Scholar
Kovats, S., Salditt, T., Metzger, T.H., Peisl, J., Stimpel, T., Lorenz, H., Chu, J.O., and Ismail, K. (1999). “Interface morphology in strained layer epitaxy of Si/Si 1−xGe x layers studied by X-ray scattering under grazing incidence and atomic force microscopy,” J. Phys. D 32, 359368.CrossRefGoogle Scholar
Kunze, G. (1964). “Intensitäts-, Absorptions- und Verschiebungsfaktoren von Interferenzlinien bei Bragg-Brentano-und Seemann-BohlinDiffraktometern, Teil I,” Z. Phys. XVII, 522534.(1964). “Intensitäts-, Absorptions- und Verschiebungsfaktoren von Interferenzlinien bei Bragg-Brentano-und Seemann-BohlinDiffraktometern, Teil II,” Z. Phys. XVIII, 28–37.Google Scholar
Mack, M., and Parrish, W. (1967). “Seemann–Bohlin X-ray diffractometry, II Comparision of aberations and intensity with conventional diffractometer,” Acta Crystallogr. 23, 693700.CrossRefGoogle Scholar
Noma, T., and Iida, A. (1998). “Micro X-ray diffraction analysis of thin films using grazing exit conditions,” J. Synchrotron Radiat. 5, 902904.CrossRefGoogle ScholarPubMed
Noma, T., and Takada, K. (1999). “Surface-sensitive X-ray fluorescence and diffraction analysis with grazing exit geometry,” X-Ray Spectrometry 28, 433439.3.0.CO;2-C>CrossRefGoogle Scholar
Parrish, W., and Mack, M. (1967). “Seemann–Bohlin X-ray diffractometry, I Instrumentation,” Acta Crystallogr. 23, 687692.CrossRefGoogle Scholar
Rafaja, D., and Valvoda, V. (1991). “Angular corrections for the Seemann–Bohlin X-ray diffractometer,” Powder Diffr. 6, 200203.CrossRefGoogle Scholar
Rhan, H., and Peisl, J. (1996). “Shift of the Bragg position in grazing-incidence diffraction,” Z. Phys. B 100, 365368.CrossRefGoogle Scholar
Rugel, S., Wallner, G., and Metzger, H. (1993). “Grazing-incidence X-ray diffraction on ion-implanted silicon,” J. Appl. Crystallogr. 26, 1.CrossRefGoogle Scholar
Segmüller, A. (1957). “Die Bestimmung von Glanzwinkeln, Linienbreiten und Intensitäten der Röntgeninterferenzen mit einem Geiger-Zählrohr-Goniometer nach dem Seemann–Bohlin–Prinzip,” Z. Metallkd. 48, 448454.Google Scholar
Segmüller, A., and Murakami, M. (1985). “Characterization of thin films by X-ray diffraction,” in Thin Films From Free Atoms and Particles, edited by E. Klabunde (Academic, New York), pp. 325–351.Google Scholar
Van Acker, K., De Byser, L.Celis, J.P., and Van Houtte, P. (1994). “Characterization of thin nickel electroplatings by the low-incident-beam-angle diffraction method,” J. Appl. Crystallogr. 27, 5666.CrossRefGoogle Scholar
Wieder, T. (1995a). “SBGBBG, a program to evaluate the macroscopic strain/stress tensor of a polycrystalline sample from X-ray reflection positions,” Comput. Phys. Commun. 85, 398414.CrossRefGoogle Scholar
Wieder, T. (1995b). “Lattice constant determination by grazing incidence diffraction in thin cubic films under thermal strain,” Thin Solid Films 256, 3943.CrossRefGoogle Scholar
Zendehroud, J., Wieder, T., Thoma, K., and Gärtner, H. (1993). “Tiefenauflösende röntgenographische Dehnungsmessungen an TiN-Schichten in Seemann-Bohlin-Geometrie,” Härterei-Technische Mitteilungen 48, 4149.Google Scholar
Zendehroud, J., Wieder, T., and Klein, H. (1995). “Determination of stress tensors in thin textured copper films by grazing incidence diffraction,” Materialwissenschaften und Werkstofftechnik 26, 553559.CrossRefGoogle Scholar