Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T14:27:40.218Z Has data issue: false hasContentIssue false

Identification of two lead perovskites, Pb2ScTaO6 and Pb(Sc0.5Nb0.5)O3, by X-ray powder diffraction patterns

Published online by Cambridge University Press:  10 January 2013

C. Caranoni
Affiliation:
Laboratoire Matériaux: Organisation et Propriétés associé au C.N.R.S., Case 151, Faculté des Sciences et Techniques, Avenue Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France
P. Lampin
Affiliation:
Laboratoire Matériaux: Organisation et Propriétés associé au C.N.R.S., Case 151, Faculté des Sciences et Techniques, Avenue Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France
C. Boulesteix
Affiliation:
Laboratoire Matériaux: Organisation et Propriétés associé au C.N.R.S., Case 151, Faculté des Sciences et Techniques, Avenue Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France

Abstract

Substituting cations in materials with the formula Pb2B′B″O6 is more or less ordered on the B sites. High-quality single crystals of Pb2ScTaO6 (PST) and Pb(Sc0.5Nb0.5)O3 (PSN) were prepared from two thermal cycles. A stoichiometric mixture of the constituent oxides was prefired at up to 1000 °C, and then crystals were grown from a PbO–B2O3–PbF2 flux mixture, starting at a temperature of 1100 °C for PSN and 1200 °C for PST. At room temperature, X-ray examination showed that PSN had a perovskite structure with a cubic unit-cell and a refined parameter a = 4.080(1 ) Å, space group Pm3m and Z = 1, whereas PST formed a well-ordered superlattice with a = 8.136(1) Å, Z = 4 and space group Fm3m. In each case a fully indexed powder pattern is presented. The degree of order is estimated to be close to 80% for PST and less than 10% for PSN.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Caranoni, C., Lampin, P., Siny, I., Zheng, J. G., Li, Q., Kang, Z. C., and Boulesteix, C. (1992). Phys. Stat. Sol. (a) 130, 2537.CrossRefGoogle Scholar
Galasso, F. S. (1969). Structure, Properties and Preparation of Perovskitetype Compounds (Pergamon, Oxford).Google Scholar
Kang, Z. C., Caranoni, C., Siny, I., Nihoul, G., and Boulesteix, C. (1990). J. Solid State Chem. 87, 308320.CrossRefGoogle Scholar
Pauling, L. (1924). J. Am. Chem. Soc. 46, 2738.CrossRefGoogle Scholar
Powder Diffraction File (1990). JCPDS International Centre for Diffraction Data, Pennsylvania, U.S.A.Google Scholar
Setter, N., and Cross, L. E. (1980a). J. Appl. Phys. 51 (8), 43564360.CrossRefGoogle Scholar
Setter, N., and Cross, L. E. (1980b). J. Materials Sci. 15, 2478–82.CrossRefGoogle Scholar
Setter, N., and Cross, L. E. (1980c). J. Crystal Growth 50, 555–56.CrossRefGoogle Scholar
Stenger, C. G. F., and Burggraaf, A. J. (1980). Phys. Stat. Sol. (a) 61, 653664.CrossRefGoogle Scholar
Stenger, C. G. F., Scholten, F. L., and Burggraaf, A. J. (1979). Solid State Commun. 32, 989992.CrossRefGoogle Scholar