Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T09:29:59.287Z Has data issue: false hasContentIssue false

Improvement in determining the crystal structure of inorganic compounds using powder diffraction data

Published online by Cambridge University Press:  29 February 2012

Luis Reinaudi
Affiliation:
INFIQC, Unidad de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
Ezequiel P.M. Leiva
Affiliation:
INFIQC, Unidad de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
Raúl E. Carbonio
Affiliation:
INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina

Abstract

A new way of incorporating powder diffraction data into a cost function to predict the crystalline structure of inorganic solids is proposed. This approach was applied to the following series of compounds: cubic SrTiO3, tetragonal NaNbO3, TiO2 (anatase), tetragonal CaTiO3, and hexagonal BaTiO3. A tremendous increase in the efficiency of obtaining the correct structure is achieved when a cost function based upon this new approach is applied to these problems.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramov, Yu. A., Tsirelson, V. G., Zavodnik, V. E., Ivanov, S. A., and Brown, I. D. (1995). “The chemical bond and atomic displacements in SrTiO3 from X-ray diffraction analysis,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S0108768195003752 51, 942951.Google Scholar
Akimoto, J., Gotoh, Y., and Oosawa, Y. (1994). “Refinement of hexagonal BaTiO3,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun.ACSCEE10.1107/S0108270193008637 50, 160161.Google Scholar
Andreev, Yu. G. and Bruce, P. G. (1998). “Solving crystal structures of molecular solids without single crystals: A simulated annealing approach,” J. Chem. Soc. Dalton Trans.JCDTBI (1998), 40714080.CrossRefGoogle Scholar
Beran, A., Libowitzky, E., and Armbruster, T. (1996). “A single-crystal infrared spectroscopic and X-ray-diffraction study of untwinned San Benito perovskite containing OH groups,” Can. Mineral.CAMIA6 34, 803809.Google Scholar
Darlington, C. N. W. and Knight, K. S. (1999). “High-temperature phases of NaNbO3 and NaTaO3,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S010876819800963X 55, 2430.Google Scholar
David, W. I. F., Shankland, K., and Shankland, N. (1998). “Routine determination of molecular crystal structures from powder diffraction data,” Chem. Commun. (Cambridge)CHCOFS (1998), 931932.CrossRefGoogle Scholar
David, W. I. F., Shankland, K., McCusker, L. B., and Baerlocher, Ch. (Eds.) (2002). Structure Determination from Powder Diffraction Data (International Union of Crystallography Monographs on Crystallography, 13.) (Oxford University Press, Oxford).Google Scholar
Donnerberg, H., Tomlinson, S. M., Catlow, C. R. A., and Schirmer, O. F. (1989). “Computer-simulation studies of intrinsic defects in LiNbO3 crystals,” Phys. Rev. B: Condens. Matter 40, 1190911916.Google Scholar
Engel, G. E., Wilke, S., König, O., Harris, K. D. M., and Leusen, F. J. J. (1999). “PowderSolve-a complete package for crystal structure solution from powder diffraction patterns,” J. Appl. Crystallogr.JACGAR10.1107/S0021889899009930 32, 11691179.Google Scholar
Ewald, P. P. (1921). “Die Berechnung optischer und elektrostatischer Gitterpotentiale,” Ann. Phys.ANPYA210.1002/andp.19213690304 369, 253287.CrossRefGoogle Scholar
Freeman, C. M., Newsam, J. M., Levine, S. M., and Catlow, C. R. A. (1993). “Inorganic crystal structure prediction using simplified potentials and experimental unit cells: Application to the polymorphs of titanium dioxide,” J. Mater. Chem.JMACEP10.1039/jm9930300531 3, 531535.Google Scholar
Howard, C. J., Sabine, T. M., and Dickson, F. (1991). “Structural and thermal parameters for rutile and anatase,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S010876819100335X 47, 462468.Google Scholar
Kapustinskii, A. F. (1956). “Lattice energy of ionic crystals,” Q. Rev., Chem. Soc.QUREA710.1039/qr9561000283 10, 283294.CrossRefGoogle Scholar
Le Bail, A. (2001). “ESPOIR: A program for solving structures by Monte Carlo analysis of powder diffraction data,” Mater. Sci. ForumMSFOEP 378–381, 6570.Google Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull.MRBUAC10.1016/0025-5408(88)90019-0 23, 447452.CrossRefGoogle Scholar
Lewis, G. V. and Catlow, C. R. A. (1985). “Potential models for ionic oxides,” J. Phys. CJPSOAW10.1088/0022-3719/18/6/010 18, 11491161.Google Scholar
MacGlashan, G. S., Andreev, Yu. G., and Bruce, P. G. (1999). “Structure of the polymer electrolyte poly(ethylene oxide)6: LiAsF6,” Nature (London)NATUAS10.1038/19730 398, 792794.CrossRefGoogle Scholar
Pagola, S. and Stephens, P. W. (1999). Powder Structure Solution Program (Computer Software), Department of Physics and Astronomy, State University of New York, Stony Brook, NY.Google Scholar
Pagola, S. and Stephens, P. W. (2000). “Towards the solution of organic crystal structures by powder diffraction,” Mater. Sci. ForumMSFOEP 321–324, 4045.Google Scholar
Pagola, S., Stephens, P. W., Bohle, D. S., Kosar, A. D., and Madsen, S. K. (2000). “The structure of malaria pigment β-haematin,” Nature (London)NATUAS10.1038/35005132 404, 307310.CrossRefGoogle ScholarPubMed
Pannetier, J., Bassas-Alsina, J., Rodríguez-Carvajal, J., and Caignaert, V. (1990). “Prediction of crystal structures from crystal chemistry rules by simulated annealing,” Nature (London)NATUAS10.1038/346343a0 346, 343345.Google Scholar
Putz, H., Schön, J. C., and Jansen, M. (1999). “Combined method for ab initio structure solution from powder diffraction data,” J. Appl. Crystallogr.JACGAR10.1107/S0021889899006615 32, 864870.CrossRefGoogle Scholar
Reinaudi, L., Carbonio, R. E., and Leiva, E. P. M. (1998). “Inclusion of symmetry for the enhanced determination of crystalline structures from powder diffraction data using simulated annealing,” J. Chem. Soc., Chem. Commun.JCCCAT (1998), 255256.CrossRefGoogle Scholar
Reinaudi, L., Leiva, E. P. M., and Carbonio, R. E. (2000). “Simulated annealing prediction of the crystal structure of ternary inorganic compounds using symmetry restrictions,” J. Chem. Soc. Dalton Trans.JCDTBI (2000) 42584262.Google Scholar
Reinaudi, L., Serra, P., Leiva, E. P. M., and Carbonio, R. E. (2001). “Prediction of the crystal structure of binary and ternary inorganic compounds using symmetry restrictions and powder diffraction data,” Adv. X-Ray Anal.AXRAAA 44, 116121.Google Scholar
Rodríguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica BPHYBE310.1016/0921-4526(93)90108-I 192, 5569.Google Scholar
Serra, P., Stanton, A. F., Kais, S., and Bleil, R. E. (1997). “Comparison study of pivot methods for global optimization,” J. Chem. Phys.JCPSA610.1063/1.473678 106, 71707177.CrossRefGoogle Scholar
Walker, J. R. and Catlow, C. R. A. (1982). “Structure and transport in non-stoichiometric βAl2O3,” J. Phys. CJPSOAW10.1088/0022-3719/15/30/009 15, 61516161.Google Scholar
Woodley, S. M., Battle, P. D., Gale, J. D., and Catlow, C. R. A. (1999). “The prediction of inorganic crystal structures using a genetic algorithm and energy minimization,” Phys. Chem. Chem. Phys.PPCPFQ10.1039/a901227c 1, 25352542.Google Scholar