Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T14:44:00.293Z Has data issue: false hasContentIssue false

Influence of the sample morphology on total reflection X-ray fluorescence analysis

Published online by Cambridge University Press:  29 February 2012

C. Horntrich
Affiliation:
Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna, Austria
F. Meirer
Affiliation:
Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna, Austria
C. Streli
Affiliation:
Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna, Austria
P. Kregsamer
Affiliation:
Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna, Austria
G. Pepponi
Affiliation:
FBK-irst, via Sommarive 18, 38050 Povo (Trento), Italy
N. Zoeger
Affiliation:
Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna, Austria
P. Wobrauschek
Affiliation:
Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna, Austria

Abstract

Total reflection X-ray fluorescence analysis (TXRF) is a method for qualitative and quantitative analysis of trace elements. In general TXRF is known to allow for linear calibration typically using an internal standard for quantification. For small sample amounts (low ng region) the thin film approximation is valid neglecting absorption effects of the exciting and the detected radiation. However, for higher total amounts of samples deviations from the linear relation between fluorescence intensity and sample amount have been observed. The topic of the presented work is an investigation of the parameters influencing the absorption phenomenon. Samples with different total amounts of arsenic have been prepared to determine the upper limit of sample mass where the linear relation between fluorescence intensity and sample amount is no longer guaranteed. It was found that the relation between fluorescence intensity and sample amount is linear up to ∼100 ng arsenic. A simulation model was developed to calculate the influence of the absorption effects. Even though the results of the simulations are not satisfying yet it could be shown that one of the key parameters for the absorption effect is the density of the investigated element in the dried residues.

Type
X-Ray Fluorescence
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Austrian Center of Competence for Tribology (ACT) (2009). (http://www.ac2t.at/), accessed 8 April 2009.Google Scholar
Deegan, R. D. (2000a). “Pattern formation in drying drops,” Phys. Rev. EPLEEE8 61, 475485.10.1103/PhysRevE.61.475CrossRefGoogle ScholarPubMed
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R., and Witten, T. A. (2000b). “Contact line deposits in an evaporating drop,” Phys. Rev. EPLEEE8 62, 756765.10.1103/PhysRevE.62.756CrossRefGoogle Scholar
Fabry, L. and Pahlke, S. (2002). Surface and Thin Film Analysis, edited by Bubert, H. and Jenett, H. (Wiley, Weinheim), pp. 181193.CrossRefGoogle Scholar
Hellin, D., Fyen, W., Rip, J., Delande, T., Mertens, P. W., Gendt, S. D., and Vinckier, C. (2004a). “Saturation effects in TXRF on micro-droplet residue samples,” J. Anal. At. Spectrom.JASPE2 19, 15171523.10.1039/b410643aCrossRefGoogle Scholar
Hellin, D., Rip, J., Arnauts, S., De Gendt, S., Mertens, P. W., and Vinckier, C. (2004b). “Validation of vapor phase decomposition–droplet collection–total reflection X-ray fluorescence spectrometry for metallic contamination analysis of silicon wafers,” Spectrochim. Acta, B At. Spectrosc. 59, 11491157.10.1016/j.sab.2004.03.011CrossRefGoogle Scholar
Hellin, D., Rip, J., Geens, V., Delande, T., Conard, T., Gendt, S. D., and Vinckier, C. (2005). “Remediation for TXRF saturation effects on microdroplet residues from preconcentration methods on semiconductor wafers,” J. Anal. At. Spectrom.JASPE2 20, 652658.10.1039/b502208hCrossRefGoogle Scholar
Holleman, A. F., Wiberg, E., and Wiberg, N. (1995). Lehrbuch der Anorganischen Chemie (Walter de Gruyter, New York), p. 2033.Google Scholar
IAEA (1995). QXAS, AXIL Version (IAEA, Vienna).Google Scholar
Klockenkämper, R. (1996). Total Reflection X-ray Fluorescence Analysis (Wiley, Weinheim).Google Scholar
Krause, M. O. (1979). “Atomic radiative and radiationless yields for K and L shells,” J. Phys. Chem. Ref. DataJPCRBU 8, 307327.CrossRefGoogle Scholar
Kregsamer, P., Streli, C., and Wobrauschek, P. (2001). Handbook of X-ray Spectrometry, edited by Van Grieken, R. and Markowicz, A. (Marcel Dekker, New York), pp. 559602.Google Scholar
Ladisich, W., Rieder, R., Wobrauschek, P., and Aiginger, H. (1993). “Total reflection X-ray fluorescence analysis with monoenergetic excitation and full spectrum excitation using rotating anode X-ray tubes,” Nucl. Instrum. Methods Phys. Res. ANIMAER 330, 501506.10.1016/0168-9002(93)90582-3CrossRefGoogle Scholar
McMaster, W. H., Del Grande, N. K., Mallett, J. H., and Hubbell, J. H. (1969). Compilation of X-Ray Cross Sections, Section II Revision I (Report No. UCRL-50174). Livermore, CA: Lawrence Livermore National Laboratory.Google Scholar
NanoFocus, Inc. (2009). (http://www.nanofocus.de/usurf-explorer.html?&L=1), accessed 8 April 2009.Google Scholar
Pahlke, S. (2003). “Quo Vadis total reflection X-ray fluorescence?Spectrochim. Acta, B At. Spectrosc. 58, 20252038.10.1016/S0584-8547(03)00193-9CrossRefGoogle Scholar
Pahlke, S., Fabry, L., Kotz, L., Mantler, C., and Ehmann, T. (2001). “Determination of ultra trace contaminants on silicon wafer surfaces using total-reflection X-ray fluorescence TXRF ‘state-of-the-art’,” Spectrochim. Acta, B At. Spectrosc. 56, 22612274.10.1016/S0584-8547(01)00312-3CrossRefGoogle Scholar
Popov, Y. O. (2005). “Evaporative deposition patterns: Spatial dimensions of the deposit,” Phys. Rev. EPLEEE8 71, 1-17.10.1103/PhysRevE.71.036313CrossRefGoogle ScholarPubMed
Prange, A. and Schwenke, H. (1992). “Trace element analysis using total-reflection X-ray fluorescence spectrometry,” Adv. X-Ray Anal.AXRAAA 35, 899923.Google Scholar
Scofield, J. A. (1974). “Exchange corrections of K x-ray emission rates,” Adv. At., Mol., Opt. Phys.AAMPE9 9, 10411049.CrossRefGoogle Scholar
Shiraiwa, T. and Fujino, N. (1966). “Theoretical calculation of fluorescent X-ray intensity in fluorescent x-ray petrochemical analysis Japan,” Jpn. J. Appl. Phys.JJAPA5 5, 886899.10.1143/JJAP.5.886CrossRefGoogle Scholar
Stoev, K. N. and Sakurai, K. (1999). “Review on grazing incidence X-ray spectrometry and reflectometry,” Spectrochim. Acta, B At. Spectrosc. 54, 4182.10.1016/S0584-8547(98)00160-8CrossRefGoogle Scholar
Wobrauschek, P. (2007). “Total reflection x-ray fluorescence analysis—a review,” XRay Spectrom. 36, 289300.10.1002/xrs.985CrossRefGoogle Scholar
Wobrauschek, P., Kregsamer, P., Streli, C., and Aiginger, H. (1991). “Recent developments and results in total reflection X-ray fluorescence analysis,” Adv. X-Ray Anal.AXRAAA 34, 112.Google Scholar
Wobrauschek, P., Kregsamer, P., Streli, C., Rieder, R., and Aiginger, H. (1992). “TXRF with various excitation sources,” Adv. X-Ray Anal.AXRAAA 35, 925931.Google Scholar